Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ambient pressure storage of high-density methane in nanoporous carbon coated with graphene

Abstract

Storage and transportation of methane (CH4) remains challenging as it cannot be liquefied at ambient temperature and instead must be stored as compressed gas at high pressures (approximately 25 MPa). Alternatively, it can be stored within nanoporous materials at moderate pressures (for example, 3.5 MPa) but this ‘adsorbed natural gas’ approach can suffer from substantial desorption with only minor temperature increases. Both methods therefore necessitate additional safety measures. Here we report graphene-coated porous carbon materials that can be charged with CH4 at high pressure and retain it at ambient pressure and temperature (below 318 K), thereby enhancing storage safety. Our data suggest that graphene serves as a thermally controllable lock that obstructs or activates pores to trap or release CH4, enabling a pressure-equivalent loading of 19.9 MPa at 298 K, and release upon heating to 473 K. The resulting reversible CH4 volumetric capacity reaches 142 v/v, exceeding that of various adsorbed natural gas materials at 3.5 MPa and 298 K when considering container space utilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterizations of graphene-coated carbon.
Fig. 2: CH4 storage/release model and CH4 storage performance.
Fig. 3: Characterizations of pore obstruction/activation.
Fig. 4: Assessment of CH4 storage in graphene-coated carbons.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information and source data files. Source data are provided with this paper.

References

  1. Methane Opportunities for Vehicular Energy DE-FOA-0000672 (DOE, 2012); https://arpa-e-foa.energy.gov/

  2. Alezi, D. et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 137, 13308–13318 (2015).

    Article  Google Scholar 

  3. Tian, T. et al. A sol-gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018).

    Article  Google Scholar 

  4. Chen, Z. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020).

    Article  Google Scholar 

  5. Rozyyev, V. et al. High-capacity methane storage in flexible alkane-linked porous aromatic network polymers. Nat. Energy 4, 604–611 (2019).

    Article  Google Scholar 

  6. Peng, Y. et al. Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887–11894 (2013).

    Article  Google Scholar 

  7. Lozano-Castelló, D., Alcañiz-Monge, J., De La Casa-Lillo, M. A., Cazorla-Amorós, D. & Linares-Solano, A. Advances in the study of methane storage in porous carbonaceous materials. Fuel 81, 1777–1803 (2002).

    Article  Google Scholar 

  8. He, Y., Zhou, W., Qian, G. & Chen, B. Methane storage in metal-organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014).

    Article  Google Scholar 

  9. Casco, M. E. et al. High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem. Mater. 27, 959–964 (2015).

    Article  Google Scholar 

  10. Kumar, K. V., Preuss, K., Titirici, M. M. & Rodríguez-Reinoso, F. Nanoporous materials for the onboard storage of natural gas. Chem. Rev. 117, 1796–1825 (2017).

    Article  Google Scholar 

  11. Simon, C. M. et al. The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199 (2015).

    Article  Google Scholar 

  12. Gedeon, G. Hazards of Chemicals and Gases (Continuing Education & Development, Inc., 2023).

  13. Gao, Q., Xu, J., Cao, D., Chang, Z. & Bu, X.-H. A rigid nested metal–organic framework featuring a thermoresponsive gating effect dominated by counterions. Angew. Chem. 128, 15251–15254 (2016).

    Article  Google Scholar 

  14. Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).

    Article  Google Scholar 

  15. Li, G. et al. Temperature-regulated guest admission and release in microporous materials. Nat. Commun. 8, 15777 (2017).

    Article  Google Scholar 

  16. Chen, K. et al. Gating effect for gas adsorption in microporous materials—mechanisms and applications. Chem. Soc. Rev. 51, 1139–1166 (2022).

    Article  Google Scholar 

  17. Kim, H. et al. Temperature-triggered gate opening for gas adsorption in microporous manganese formate. Chem. Commun. https://doi.org/10.1039/b811087e (2008).

  18. Zammit, M. et al. Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report (PNNL, 2012); https://www.pnnl.gov/main/publications/external/technical_Reports/PNNL-22815.pdf

  19. Papapetrou, M., Kosmadakis, G., Cipollina, A., La Commare, U. & Micale, G. Industrial waste heat: estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng. 138, 207–216 (2018).

    Article  Google Scholar 

  20. Waste Heat Recovery: Technology and Opportunities in U.S. Industry (DOE, 2008); https://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf

  21. de Tomas, C. et al. Structural prediction of graphitization and porosity in carbide-derived carbons. Carbon 119, 1–9 (2017).

    Article  Google Scholar 

  22. Vallejos-Burgos, F. et al. 3D nanostructure prediction of porous carbons via gas adsorption. Carbon 215, 118431 (2023).

    Article  Google Scholar 

  23. Fan, J. et al. Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen. J. Phys. Chem. B 110, 1587–1591 (2006).

    Article  Google Scholar 

  24. Utsuimi, S. et al. Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J. Phys. Chem. B 109, 14319–14324 (2005).

    Article  Google Scholar 

  25. Kaneko, K., Shimizu, K. & Suzuki, T. Intrapore field‐dependent micropore filling of supercritical N2 in slit‐shaped micropores. J. Chem. Phys. 97, 8705–8711 (1992).

    Article  Google Scholar 

  26. Murata, K. et al. Pore structure of single-wall carbon nanohorn aggregates. Chem. Phys. Lett. 331, 14–20 (2000).

    Article  Google Scholar 

  27. Howe, J. Y., Rawn, C. J., Jones, L. E. & Ow, H. Improved crystallographic data for graphite. Powder Diffr. 18, 150–154 (2003).

    Article  Google Scholar 

  28. Wang, S. et al. The subtracting pore effect method for an accurate and reliable surface area determination of porous carbons. Carbon 175, 77–86 (2021).

    Article  Google Scholar 

  29. Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009).

    Article  Google Scholar 

  30. Graf, D. et al. Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett. 7, 238–242 (2007).

    Article  Google Scholar 

  31. Duane, W. & Shimizu, T. The relation between the intensity of general X-radiation and the atomic number of the anticathode. Phys. Rev. 14, 525–529 (1919).

    Article  Google Scholar 

  32. Pelletier, M. J. Quantitative analysis using Raman spectrometry. Appl. Spectrosc. 57, 20A–42A (2003).

    Article  Google Scholar 

  33. Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000).

    Article  Google Scholar 

  34. Liu, H.-N., Cong, X., Lin, M.-L. & Tan, P.-H. The intrinsic temperature-dependent Raman spectra of graphite in the temperature range from 4 K to 1,000 K. Carbon 152, 451–458 (2019).

    Article  Google Scholar 

  35. Sharma, M. et al. Temperature dependent Raman modes of reduced graphene oxide: effect of anharmonicity, crystallite size and defects. Carbon 184, 437–444 (2021).

    Article  Google Scholar 

  36. Akikubo, K., Kurahashi, T., Kawaguchi, S. & Tachibana, M. Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction. Carbon 169, 307–311 (2020).

    Article  Google Scholar 

  37. Tsang, D. K. L., Marsden, B. J., Fok, S. L. & Hall, G. Graphite thermal expansion relationship for different temperature ranges. Carbon 43, 2902–2906 (2005).

    Article  Google Scholar 

  38. Zakharchenko, K. V., Los, J. H., Katsnelson, M. I. & Fasolino, A. Atomistic simulations of structural and thermodynamic properties of bilayer graphene. Phys. Rev. B 81, 235439 (2010).

    Article  Google Scholar 

  39. Webster, C. E., Drago, R. S. & Zerner, M. C. Molecular dimensions for adsorptives. J. Am. Chem. Soc. 120, 5509–5516 (1998).

    Article  Google Scholar 

  40. Webster, C. E., Cottone, A. & Drago, R. S. Multiple equilibrium analysis description of adsorption on Na-mordenite and H-mordenite. J. Am. Chem. Soc. 121, 12127–12139 (1999).

    Article  Google Scholar 

  41. Wang, S. et al. Activation routes for high surface area graphene monoliths from graphene oxide colloids. Carbon 76, 220–231 (2014).

    Article  Google Scholar 

  42. Marsh, H. & Rodriguez-Reinoso, F. Activated Carbon (Elsevier, 2006).

  43. Kawabuchi, Y., Kishino, M., Kawano, S., Whitehurst, D. & Mochida, I. Carbon deposition from benzene and cyclohexane onto active carbon fiber to control its pore size. Langmuir 12, 4281–4285 (1996).

    Article  Google Scholar 

  44. Moreira, R. F. P. M., José, H. J. & Rodrigues, A. E. Modification of pore size in activated carbon by polymer deposition and its effects on molecular sieve selectivity. Carbon 39, 2269–2276 (2001).

    Article  Google Scholar 

  45. Vallejos-Burgos, F., Coudert, F.-X. & Kaneko, K. Air separation with graphene mediated by nanowindow-rim concerted motion. Nat. Commun. 9, 1812 (2018).

    Article  Google Scholar 

  46. Urita, K., Suenaga, K., Sugai, T., Shinohara, H. & Iijima, S. In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap. Phys. Rev. Lett. 94, 155502 (2005).

    Article  Google Scholar 

  47. Shah, J. K. et al. Cassandra: an open source Monte Carlo package for molecular simulation. J. Comput. Chem. 38, 1727–1739 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Science and Technology Agency (JST) Open Innovation Platform with Enterprise, Research Institute and Academia (OPERA), under project number JPMJOP1722 (K.K.). J.S.-A. acknowledges financial support from the Ministerio de Ciencia e Innovación (Project PID2019-108453GB-C21) and the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital (Project CIPROM/2021/022) (J.S.-A.). K.K. was also financially supported by Takagi Co. S.W. acknowledges partial support from JST funds. We thank AD’ALL Co. for providing activated carbon fibre samples. We also thank Y. Gogotsi (Drexel University) for providing valuable suggestions for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.W. and K.K. developed the study concept and designed the methodology. S.W., F.V.-B, H.T. and K.K. wrote the paper. S.W. synthesized the samples. S.W., A.F., H.O., M.N., Y.K., T.O., H.K., K.U., H.N., I.M. and T.H. contributed to sample characterization. F.V.-B. and H.T. built the simulation model. F.V.-B. performed the Grand Canonical Monte Carlo calculations. H.T. performed the MD simulations. S.W., J.P.M.-L. and J.S.-A. performed the CH4 adsorption measurements. A.F., H.O., K.U., H.T. and J.S.-A. contributed to the discussion and editing of the paper.

Corresponding author

Correspondence to Katsumi Kaneko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10, Figs. 1–38 and Tables 1–15.

Supplementary Video 1

Temperature-dependent TEM observations of graphene-coated carbon at elevated temperatures.

Supplementary Video 2

Stable graphene layer contact responsible for pore locking at 298 K.

Supplementary Video 3

Movement of the graphene coating layers corresponding to pore unlocking at 473 K.

Source data

Source Data Fig. 1

Structural characterizations of graphene-coated carbon.

Source Data Fig. 2

Methane storage performance of graphene-coated carbon and reported ANG.

Source Data Fig. 3

Temperature-dependent characterizations of pore obstruction/activation.

Source Data Fig. 4

Methane storage performance of graphene-coated carbons prepared under different conditions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Vallejos-Burgos, F., Furuse, A. et al. Ambient pressure storage of high-density methane in nanoporous carbon coated with graphene. Nat Energy (2025). https://doi.org/10.1038/s41560-025-01783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-025-01783-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing