Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of Archaean oxidizing and wet magmas from mafic crustal overthickening

Abstract

The geodynamic setting leading to the formation of Earth’s first continents remains debated. Zircons preserved in Archaean granitoids record evidence of a relatively oxidizing and wet magmatic source. Subduction-related mechanisms for the formation of Archaean granitoids have been invoked to explain these signatures, suggesting an early initiation of subduction on Earth between 4.0 and 3.6 billion years ago, in the Eoarchaean era. Here I use forward petrological modelling and Monte Carlo randomization models to show that relatively oxidizing and wet magmas resembling Archaean granitoids worldwide can occur from melts derived from the partial melting of an overthickened mafic crust in a non-subduction scenario. The formation of oxidizing and wet magmatic signatures is therefore not diagnostic of continental crust generation by subduction or of subduction initiation in the Eoarchaean. Instead, the apparent observed increase in oxygen fugacity and water contents during the Eoarchaean may indicate magmatic thickening and melting of overthickened crust with time, suggesting that this process may have contributed to the development of Earth’s first continents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: \({\boldsymbol{P}} \textendash {\boldsymbol{X}}_{{\mathbf{H}}_{\mathbf{2}}{\mathbf{O}}}\) phase diagrams showing the effect of variably hydrated EAT compositions on the melts’ fO2 (∆FMQ) and H2O contents.
Fig. 2: \({\boldsymbol{P}} \textendash {\boldsymbol{X}}_{{\mathbf{Fe}}^{\mathbf{3+}}}\) phase diagrams showing the effect of different redox conditions on the melts’ fO2 (∆FMQ) and H2O contents.
Fig. 3: PX phase diagrams showing the effect of compositionally different sources on the melts’ fO2 (∆FMQ) and H2O contents.
Fig. 4: Monte Carlo-derived melts compared with Archaean granitoid data.

Similar content being viewed by others

Data availability

All data are available via Zenodo at https://doi.org/10.5281/zenodo.11506583 (ref. 39). In addition, all data necessary for evaluating the findings of this study are available in this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Ge, R. F., Wilde, S. A., Zhu, W. B. & Wang, X. L. Earth’s early continental crust formed from wet and oxidizing arc magmas. Nature 623, 334–339 (2023).

    Article  CAS  Google Scholar 

  2. Palin, R. M. et al. Secular change and the onset of plate tectonics on Earth. Earth Sci. Rev. 207, 103172 (2020).

    Article  CAS  Google Scholar 

  3. Palin, R. M., White, R. W. & Green, E. C. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: constraints from phase equilibrium modelling. Precambrian Res. 287, 73–90 (2016).

    Article  CAS  Google Scholar 

  4. Rapp, R. P., Shimizu, N. & Norman, M. D. Growth of early continental crust by partial melting of eclogite. Nature 425, 605–609 (2003).

    Article  CAS  Google Scholar 

  5. Arndt, N. How did the continental crust form: no basalt, no water, no granite. Precambrian Res. 397, 107196 (2023).

    Article  CAS  Google Scholar 

  6. Condie, K. C. & Kröner, A. in When Did Plate Tectonics Begin on Planet Earth (eds Condie, K. C. & Pease, V.) 281–294 (Geological Society of America, 2008).

  7. Moyen, J. F. & Martin, H. Forty years of TTG research. Lithos 148, 312–336 (2012).

    Article  CAS  Google Scholar 

  8. Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017).

    Article  CAS  Google Scholar 

  9. Hartnady, M. I. et al. Fluid processes in the early Earth and the growth of continents. Earth Planet. Sci. Lett. 594, 117695 (2022).

    Article  CAS  Google Scholar 

  10. Webb, A. A. G., Müller, T., Zuo, J., Haproff, P. J. & Ramírez-Salazar, A. A non-plate tectonic model for the Eoarchean Isua supracrustal belt. Lithosphere 12, 166–179 (2020).

  11. Condie, K. C. Archean Greenstone Belts (Elsevier, 1981).

  12. Martin, H., Moyen, J.-F., Guitreau, M., Blichert-Toft, J. & Le Pennec, J.-L. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198, 1–13 (2014).

    Article  Google Scholar 

  13. Kendrick, J. & Yakymchuk, C. Garnet fractionation, progressive melt loss and bulk composition variations in anatectic metabasites: complications for interpreting the geodynamic significance of TTGs. Geosci. Front. 11, 745–763 (2020).

    Article  CAS  Google Scholar 

  14. Hernández-Montenegro, J. D., Palin, R. M., Zuluaga, C. A. & Hernández-Uribe, D. Archean continental crust formed by magma hybridization and voluminous partial melting. Sci. Rep. 11, 5263 (2021).

    Article  Google Scholar 

  15. Smithies, R. H. et al. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature 592, 70–75 (2021).

    Article  CAS  Google Scholar 

  16. Johnson, T. E. et al. Giant impacts and the origin and evolution of continents. Nature 608, 330–335 (2022).

    Article  CAS  Google Scholar 

  17. Kamber, B. S. Archean mafic–ultramafic volcanic landmasses and their effect on ocean–atmosphere chemistry. Chem. Geol. 274, 19–28 (2010).

    Article  CAS  Google Scholar 

  18. Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    Article  CAS  Google Scholar 

  19. Tamblyn, R. et al. Hydrated komatiites as a source of water for TTG formation in the Archean. Earth Planet. Sci. Lett. 603, 117982 (2023).

    Article  CAS  Google Scholar 

  20. Brown, M. & Johnson, T. Secular change in metamorphism and the onset of global plate tectonics. Am. Mineral. 103, 181–196 (2018).

    Article  Google Scholar 

  21. Palin, R. M., Weller, O. M., Waters, D. J. & Dyck, B. Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci. Front. 7, 591–607 (2016).

    Article  Google Scholar 

  22. Tang, M., Erdman, M., Eldridge, G. & Lee, C. T. A. The redox ‘filter’ beneath magmatic orogens and the formation of continental crust. Sci. Adv. 4, eaar4444 (2018).

    Article  Google Scholar 

  23. Lee, C. T. A. & Tang, M. How to make porphyry copper deposits. Earth Planet. Sci. Lett. 529, 115868 (2020).

    Article  CAS  Google Scholar 

  24. Holder, R. M., Viete, D. R., Brown, M. & Johnson, T. E. Metamorphism and the evolution of plate tectonics. Nature 572, 378–381 (2019).

    Article  CAS  Google Scholar 

  25. de Capitani, C. & Brown, T. H. The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim. Cosmochim. Acta 51, 2639–2652 (1987).

    Article  Google Scholar 

  26. de Capitani, C. & Petrakakis, K. The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral. 95, 1006–1016 (2010).

    Article  Google Scholar 

  27. Holland, T. & Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29, 333–383 (2011).

    Article  CAS  Google Scholar 

  28. Holland, T. J., Green, E. C. & Powell, R. Melting of peridotites through to granites: a simple thermodynamic model in the system KNCFMASHTOCr. J. Petrol. 59, 881–900 (2018).

    Article  CAS  Google Scholar 

  29. Green, E. et al. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 34, 845–869 (2016).

    Article  CAS  Google Scholar 

  30. White, R., Powell, R., Holland, T., Johnson, T. & Green, E. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 32, 261–286 (2014).

    Article  CAS  Google Scholar 

  31. Holland, T. J. B., Green, E. C. R. & Powell, R. A thermodynamic model for feldspars in KAlSi3O8–NaAlSi3O8–CaAl2Si2O8 for mineral equilibrium calculations. J. Metamorph. Geol. 40, 587–600 (2022).

    Article  CAS  Google Scholar 

  32. White, R., Powell, R., Holland, T. & Worley, B. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 18, 497–511 (2000).

    Article  CAS  Google Scholar 

  33. Kress, V. C. & Carmichael, I. S. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991).

    Article  CAS  Google Scholar 

  34. Frost, B. R. in Oxide Minerals (ed. Lindsley, D. H.) 1–10 (De Gruyter, 1991).

  35. Cottrell, E. & Kelley, K. A. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet. Sci. Lett. 305, 270–282 (2011).

    Article  CAS  Google Scholar 

  36. Berry, A. J., Stewart, G. A., O’Neill, H. S. C., Mallmann, G. & Mosselmans, J. F. W. A re-assessment of the oxidation state of iron in MORB glasses. Earth Planet. Sci. Lett. 483, 114–123 (2018).

    Article  CAS  Google Scholar 

  37. Zhang, H. L., Cottrell, E., Solheid, P. A., Kelley, K. A. & Hirschmann, M. M. Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chem. Geol. 479, 166–175 (2018).

    Article  CAS  Google Scholar 

  38. Aulbach, S. & Stagno, V. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44, 751–754 (2016).

    Article  CAS  Google Scholar 

  39. Hernández-Uribe, D. Supplementary dataset for manuscript "Generation of Archaean oxidizing and wet magmas from mafic crustal overthickening". Zenodo https://doi.org/10.5281/zenodo.11506583 (2024).

Download references

Acknowledgements

J. D. Hernández-Montenegro, R. M. Palin and R. M. Holder are thanked for the fruitful discussion on the topic. D. Tinkham is thanked for continuous help with Theriak-Domino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hernández-Uribe.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Elizabeth Bell, Rongfeng Ge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables

Supplementary Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Uribe, D. Generation of Archaean oxidizing and wet magmas from mafic crustal overthickening. Nat. Geosci. 17, 809–813 (2024). https://doi.org/10.1038/s41561-024-01489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01489-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing