Abstract
A growing body of evidence suggests that molecular oxygen (O2) accumulated in some shallow marine environments beneath the effectively anoxic Archaean atmosphere 4.0 to 2.5 billion years (Ga) ago. Yet, the temporal and spatial distribution of these oxygen oases is not well known. Here we use thallium (Tl) isotope ratios, which are sensitive to manganese oxide burial, to place constraints on the timing and tempo of marine oxygen oases between about 2.65 Ga and 2.50 Ga. Lower-than-crustal authigenic 205Tl/203Tl ratios are common in shales from the approximately 2.65 Ga Jeerinah Formation (Western Australia) and the 2.50 Ga Klein Naute Formation (South Africa). Particularly low 205Tl/203Tl ratios are found at 2.50 Ga, coincident with a pronounced ‘whiff’ of O2. These data can be explained by widespread seafloor manganese oxide burial, a scenario that requires persistent O2 penetration into marine sediments beneath regionally extensive marine oxygen oases. By contrast, 205Tl/203Tl ratios from the 2.60–2.52 Ga Nauga Formation (South Africa) do not deviate from crustal values, suggesting an intervening period of muted seafloor Mn oxide burial. Our data suggest that O2 accumulated over greater spatial extents and to greater depths than previously thought at about 2.65 Ga and that marine oxygenation was spatially and temporally dynamic well before the Great Oxidation Event began at about 2.4 Ga.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
269,00 € per year
only 22,42 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
All data related to this manuscript can be found in Supplementary Tables 1–3 and are also available via Figshare at https://doi.org/10.6084/m9.figshare.25212152 (ref. 65).
References
Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).
Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).
Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647–652 (2010).
Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation recorded in the ~2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. USA 115, 7711–7716 (2018).
Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).
Bosak, T., Liang, B., Sim, M. S. & Petroff, A. P. Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl Acad. Sci. USA 106, 10939–10943 (2009).
Wilmeth, D. T. et al. Neoarchean (2.7 Ga) lacustrine stromatolite deposits in the Hartbeesfontein Basin, Ventersdorp Supergroup, South Africa: implications for oxygen oases. Precambr. Res. 320, 291–302 (2019).
Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. R. Soc. B 288, 20210675 (2021).
Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Ann. Rev. Earth Planet. Sci. 44, 647–683 (2016).
Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).
Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).
Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).
Catling, D. C. in Treatise on Geochemistry 2nd edn (ed. Holland. H. D. & Turekian, K. K.) 177–195 (Elsevier, 2014).
Fischer, A. G. Fossils, early life, and atmospheric history. Proc. Natl Acad. Sci. USA 53, 1205–1215 (1965).
Eickmann, B. et al. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat. Geosci. 11, 133–138 (2018).
Fakhraee, M., Crowe, S. A. & Katsev, S. Sedimentary sulfur isotopes and Neoarchean ocean oxygenation. Sci. Adv. 4, e1701835 (2018).
Lalonde, S. V. & Konhauser, K. O. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 112, 995–1000 (2015).
Sumner, D. Y., Hawes, I., Mackey, T. J., Jungblut, A. D. & Doran, P. T. Antarctic microbial mats: a modern analog for Archean lacustrine oxygen oases. Geology 43, 887–890 (2015).
Finke, N. et al. Mesophilic microorganisms build terrestrial mats analogous to Precambrian microbial jungles. Nat. Commun. 10, 4323 (2019).
Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).
Kendall, B., Brennecka, G. A., Weyer, S. & Anbar, A. D. Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chem. Geol. 362, 105–114 (2013).
Riding, R., Fralick, P. & Liang, L. Identification of an Archean marine oxygen oasis. Precambr. Res. 251, 232–237 (2014).
Ostrander, C. M. et al. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat Geosci. 12, 186–191 (2019).
Ostrander, C. M., Johnson, A. C. & Anbar, A. D. Earth’s first redox revolution. Ann. Rev. Earth Planet. Sci. 49, 337–366 (2021).
Rehkämper, M. et al. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197, 65–81 (2002).
Ostrander, C. M. et al. Thallium isotope cycling between waters, particles, and sediments across a redox gradient. Geochim. Cosmochim. Acta 348, 397–409 (2023).
Nielsen, S. G. et al. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet. Sci. Lett. 251, 120–133 (2006).
Owens, J. D., Nielsen, S. G., Horner, T. J., Ostrander, C. M. & Peterson, L. C. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial. Geochim. Cosmochim. Acta 213, 291–307 (2017).
Calvert, S. E. & Pedersen, T. F. Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ. Geol. 91, 36–47 (1996).
Nielsen, S. G. et al. Thallium isotopes in early diagenetic pyrite—a paleoredox proxy? Geochim. Cosmochim. Acta 75, 6690–6704 (2011).
Raiswell, R. et al. The iron paleoredox proxies: a guide to the pitfalls, problems and proper practice. Am. J. Sci. 318, 491–526 (2018).
Ahrens, J. et al. Thallium cycling in pore waters of intertidal beach sediments. Geochim. Cosmochim. Acta 306, 321–339 (2021).
Ostrander, C. M. et al. Widespread seafloor anoxia during generation of the Ediacaran shuram carbon isotope excursion. Geobiology 21, 556–570 (2023).
Chen, X. et al. Iron and manganese shuttle has no effect on sedimentary thallium and vanadium isotope signatures in Black Sea sediments. Geochim. Cosmochim. Acta 317, 218–233 (2022).
Fan, H. et al. Constraining oceanic oxygenation during the Shuram excursion in South China using thallium isotopes. Geobiology 18, 348–365 (2020).
Wang, Y., Lu, W., Costa, K. M. & Nielsen, S. G. Beyond anoxia: exploring sedimentary thallium isotopes in paleo-redox reconstructions from a new core top collection. Geochim. Cosmochim. Acta 333, 347–361 (2022).
Olson, S. L. et al. Volcanically modulated pyrite burial and ocean–atmosphere oxidation. Earth Planet. Sci. Lett. 506, 417–427 (2019).
Morford, J. L., Emerson, S. R., Breckel, E. J. & Kim, S. H. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim. Cosmochim. Acta 69, 5021–5032 (2005).
Nielsen, S. G. et al. Thallium isotopic composition of the upper continental crust and rivers—an investigation of the continental sources of dissolved marine thallium. Geochim. Cosmochim. Acta 19, 2007–2019 (2005).
Ostrander, C. M. et al. An expanded shale δ98Mo record permits recurrent shallow marine oxygenation during the Neoarchean. Chem. Geol. 532, 119391 (2020).
Wille, M. et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 2417–2435 (2007).
Stüeken, E. E., Buick, R. & Anbar, A. D. Selenium isotopes support free O2 in the latest Archean. Geology 43, 259–262 (2015).
Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).
Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 1045–1048 (2009).
Flegal, A. R., Settle, D. M. & Patterson, C. C. Thallium in marine plankton. Mar. Biol. 90, 501–503 (1986).
Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).
Kristensen, E., Kristiansen, K. D. & Jensen, M. H. Temporal behavior of manganese and iron in a sandy coastal sediment exposed to water column anoxia. Estuaries 26, 690–699 (2003).
Anbar, A. D. & Holland, H. D. The photochemistry of manganese and the origin of banded iron formations. Geochim. Cosmochim. Acta 56, 2595–2603 (1992).
Liu, W. et al. Anoxic photogeochemical oxidation of manganese carbonate yields manganese oxide. Proc. Natl Acad. Sci. USA 117, 22698–22704 (2020).
Daye, M. et al. Light-driven anaerobic microbial oxidation of manganese. Nature 576, 311–314 (2019).
Lyons, T. W., Diamond, C. W. & Konhauser, K. O. Shedding light on manganese cycling in the early oceans. Proc. Natl Acad. Sci. USA 117, 25,960–25,962 (2020).
Robbins, L. J. et al. Manganese oxides, Earth surface oxygenation, and the rise of oxygenic photosynthesis. Earth Sci. Rev. 239, 104368 (2023).
Ostrander, C. M. et al. Shale heavy metal isotope records of low environmental O2 between two Archean Oxidation Events. Front. in Earth Sci. 10, 833609 (2022).
Baker, R. G. A., Rehkämper, M., Hinkley, T. K., Nielsen, S. G. & Toutain, J. P. Investigation of thallium fluxes from subaerial volcanism—implications for the present and past mass-balance of thallium in the oceans. Geochim. Cosmochim. Acta 73, 6340–6359 (2009).
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
Gumsley, A. P. et al. Timing and tempo of the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017).
Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).
Meixnerová, J. et al. Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean “whiff” of oxygen. Proc. Natl Acad. Sci. USA 118, e2107511118 (2021).
Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).
Zhelezinskaia I. Sulfur Isotopic Records in Neoarchean Carbonates: Implications for the Early Precambrian Sulfur Cycle (University of Maryland, 2018).
Nielsen, S. G., Rehkämper, M., Baker, J. & Halliday, A. N. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chem. Geol. 204, 109–124 (2004).
Ostrander, C. M., Owens, J. D. & Nielsen, S. G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma). Sci. Adv. 3, e1701020 (2017).
Nielsen, S. G., Rehkämper, M. & Prytulak, J. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem. 82, 759–798 (2017).
Bowman, C. N. et al. Linking the progressive expansion of reducing conditions to a stepwise mass extinction event in the late Silurian oceans. Geology 47, 968–972 (2019).
Chen X. et al. Transient marine bottom water oxygenation on continental shelves by 2.65 billion years ago. Figshare https://doi.org/10.6084/m9.figshare.25212152 (2025).
Acknowledgements
G. White is thanked for instrumentation troubleshooting at the MagLab. This work was supported by National Aeronautics and Space Administration 80NSSC18K1532 (J.D.O.), 19-ICAR19_2-0007 (A.D.A.) and 80NSSC22K1628 (C.M.O. and S.G.N.) and the Sloan Foundation FG-2020–13552 (J.D.O.), and a portion of this work was performed at the National High Magnetic Field Laboratory in Tallahassee, Florida, which is supported by the National Science Foundation Cooperative Agreement No. DMR-1644779 and by the State of Florida.
Author information
Authors and Affiliations
Contributions
X.C. and J.D.O. developed the project idea. X.C. and B.J.H. processed samples and performed thallium isotope analyses with contributions from J.D.O. X.C., C.M.O. and J.D.O. wrote the paper with contributions from S.G.N., B.K. and A.D.A.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks James Kasting, Weiqiang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1 and 2.
Supplementary Tables 1–3
Supplementary Table 1. Iron speciation, Mo concentration, authigenic Tl concentration and isotopic compositions for AIDP2 and AIDP3; iron speciation, Mo and Re concentrations and authigenic Tl concentration and isotopic compositions in GKP01 and GKF01; thallium isotopic compositions in AIDP2, AIDP3, GKP01 and GKF01. Supplementary Table 2. Sulfur isotope data in AIDP2, AIDP3, GKP01 and GKF01. Supplementary Table 3. Tl isotopic compositions in ABDP-9.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, X., Ostrander, C.M., Holdaway, B.J. et al. Transient marine bottom water oxygenation on continental shelves by 2.65 billion years ago. Nat. Geosci. 18, 423–429 (2025). https://doi.org/10.1038/s41561-025-01681-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-025-01681-9
This article is cited by
-
Oscillating Archean oxygen oases
Nature Geoscience (2025)