Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient marine bottom water oxygenation on continental shelves by 2.65 billion years ago

Abstract

A growing body of evidence suggests that molecular oxygen (O2) accumulated in some shallow marine environments beneath the effectively anoxic Archaean atmosphere 4.0 to 2.5 billion years (Ga) ago. Yet, the temporal and spatial distribution of these oxygen oases is not well known. Here we use thallium (Tl) isotope ratios, which are sensitive to manganese oxide burial, to place constraints on the timing and tempo of marine oxygen oases between about 2.65 Ga and 2.50 Ga. Lower-than-crustal authigenic 205Tl/203Tl ratios are common in shales from the approximately 2.65 Ga Jeerinah Formation (Western Australia) and the 2.50 Ga Klein Naute Formation (South Africa). Particularly low 205Tl/203Tl ratios are found at 2.50 Ga, coincident with a pronounced ‘whiff’ of O2. These data can be explained by widespread seafloor manganese oxide burial, a scenario that requires persistent O2 penetration into marine sediments beneath regionally extensive marine oxygen oases. By contrast, 205Tl/203Tl ratios from the 2.60–2.52 Ga Nauga Formation (South Africa) do not deviate from crustal values, suggesting an intervening period of muted seafloor Mn oxide burial. Our data suggest that O2 accumulated over greater spatial extents and to greater depths than previously thought at about 2.65 Ga and that marine oxygenation was spatially and temporally dynamic well before the Great Oxidation Event began at about 2.4 Ga.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geochemical profiles of the Jeerinah Formation in AIDP2 and AIDP3.
Fig. 2: Geochemical profiles of the Klein Naute Formation and Nauga Formation in GKP01 and GKF01.
Fig. 3: Summary of Tl isotope ratio data for the late-Archaean (~2.65 to 2.50 Ga) shales.

Similar content being viewed by others

Data availability

All data related to this manuscript can be found in Supplementary Tables 1–3 and are also available via Figshare at https://doi.org/10.6084/m9.figshare.25212152 (ref. 65).

References

  1. Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  CAS  Google Scholar 

  2. Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).

    Article  CAS  Google Scholar 

  3. Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647–652 (2010).

    Article  CAS  Google Scholar 

  4. Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation recorded in the ~2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. USA 115, 7711–7716 (2018).

    Article  CAS  Google Scholar 

  5. Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

    Article  CAS  Google Scholar 

  6. Bosak, T., Liang, B., Sim, M. S. & Petroff, A. P. Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl Acad. Sci. USA 106, 10939–10943 (2009).

    Article  CAS  Google Scholar 

  7. Wilmeth, D. T. et al. Neoarchean (2.7 Ga) lacustrine stromatolite deposits in the Hartbeesfontein Basin, Ventersdorp Supergroup, South Africa: implications for oxygen oases. Precambr. Res. 320, 291–302 (2019).

    Article  CAS  Google Scholar 

  8. Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. R. Soc. B 288, 20210675 (2021).

    Article  CAS  Google Scholar 

  9. Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Ann. Rev. Earth Planet. Sci. 44, 647–683 (2016).

    Article  CAS  Google Scholar 

  10. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  CAS  Google Scholar 

  11. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article  CAS  Google Scholar 

  12. Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Article  CAS  Google Scholar 

  13. Catling, D. C. in Treatise on Geochemistry 2nd edn (ed. Holland. H. D. & Turekian, K. K.) 177–195 (Elsevier, 2014).

  14. Fischer, A. G. Fossils, early life, and atmospheric history. Proc. Natl Acad. Sci. USA 53, 1205–1215 (1965).

    Article  Google Scholar 

  15. Eickmann, B. et al. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat. Geosci. 11, 133–138 (2018).

    Article  CAS  Google Scholar 

  16. Fakhraee, M., Crowe, S. A. & Katsev, S. Sedimentary sulfur isotopes and Neoarchean ocean oxygenation. Sci. Adv. 4, e1701835 (2018).

    Article  Google Scholar 

  17. Lalonde, S. V. & Konhauser, K. O. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 112, 995–1000 (2015).

    Article  CAS  Google Scholar 

  18. Sumner, D. Y., Hawes, I., Mackey, T. J., Jungblut, A. D. & Doran, P. T. Antarctic microbial mats: a modern analog for Archean lacustrine oxygen oases. Geology 43, 887–890 (2015).

    Article  CAS  Google Scholar 

  19. Finke, N. et al. Mesophilic microorganisms build terrestrial mats analogous to Precambrian microbial jungles. Nat. Commun. 10, 4323 (2019).

    Article  CAS  Google Scholar 

  20. Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    Article  CAS  Google Scholar 

  21. Kendall, B., Brennecka, G. A., Weyer, S. & Anbar, A. D. Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chem. Geol. 362, 105–114 (2013).

    Article  CAS  Google Scholar 

  22. Riding, R., Fralick, P. & Liang, L. Identification of an Archean marine oxygen oasis. Precambr. Res. 251, 232–237 (2014).

    Article  CAS  Google Scholar 

  23. Ostrander, C. M. et al. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat Geosci. 12, 186–191 (2019).

    Article  CAS  Google Scholar 

  24. Ostrander, C. M., Johnson, A. C. & Anbar, A. D. Earth’s first redox revolution. Ann. Rev. Earth Planet. Sci. 49, 337–366 (2021).

    Article  CAS  Google Scholar 

  25. Rehkämper, M. et al. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197, 65–81 (2002).

    Article  Google Scholar 

  26. Ostrander, C. M. et al. Thallium isotope cycling between waters, particles, and sediments across a redox gradient. Geochim. Cosmochim. Acta 348, 397–409 (2023).

    Article  CAS  Google Scholar 

  27. Nielsen, S. G. et al. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet. Sci. Lett. 251, 120–133 (2006).

    Article  CAS  Google Scholar 

  28. Owens, J. D., Nielsen, S. G., Horner, T. J., Ostrander, C. M. & Peterson, L. C. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial. Geochim. Cosmochim. Acta 213, 291–307 (2017).

    Article  CAS  Google Scholar 

  29. Calvert, S. E. & Pedersen, T. F. Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ. Geol. 91, 36–47 (1996).

    Article  CAS  Google Scholar 

  30. Nielsen, S. G. et al. Thallium isotopes in early diagenetic pyrite—a paleoredox proxy? Geochim. Cosmochim. Acta 75, 6690–6704 (2011).

    Article  CAS  Google Scholar 

  31. Raiswell, R. et al. The iron paleoredox proxies: a guide to the pitfalls, problems and proper practice. Am. J. Sci. 318, 491–526 (2018).

    Article  CAS  Google Scholar 

  32. Ahrens, J. et al. Thallium cycling in pore waters of intertidal beach sediments. Geochim. Cosmochim. Acta 306, 321–339 (2021).

    Article  CAS  Google Scholar 

  33. Ostrander, C. M. et al. Widespread seafloor anoxia during generation of the Ediacaran shuram carbon isotope excursion. Geobiology 21, 556–570 (2023).

    Article  CAS  Google Scholar 

  34. Chen, X. et al. Iron and manganese shuttle has no effect on sedimentary thallium and vanadium isotope signatures in Black Sea sediments. Geochim. Cosmochim. Acta 317, 218–233 (2022).

    Article  CAS  Google Scholar 

  35. Fan, H. et al. Constraining oceanic oxygenation during the Shuram excursion in South China using thallium isotopes. Geobiology 18, 348–365 (2020).

    Article  CAS  Google Scholar 

  36. Wang, Y., Lu, W., Costa, K. M. & Nielsen, S. G. Beyond anoxia: exploring sedimentary thallium isotopes in paleo-redox reconstructions from a new core top collection. Geochim. Cosmochim. Acta 333, 347–361 (2022).

    Article  CAS  Google Scholar 

  37. Olson, S. L. et al. Volcanically modulated pyrite burial and ocean–atmosphere oxidation. Earth Planet. Sci. Lett. 506, 417–427 (2019).

    Article  CAS  Google Scholar 

  38. Morford, J. L., Emerson, S. R., Breckel, E. J. & Kim, S. H. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim. Cosmochim. Acta 69, 5021–5032 (2005).

    Article  CAS  Google Scholar 

  39. Nielsen, S. G. et al. Thallium isotopic composition of the upper continental crust and rivers—an investigation of the continental sources of dissolved marine thallium. Geochim. Cosmochim. Acta 19, 2007–2019 (2005).

    Article  Google Scholar 

  40. Ostrander, C. M. et al. An expanded shale δ98Mo record permits recurrent shallow marine oxygenation during the Neoarchean. Chem. Geol. 532, 119391 (2020).

    Article  CAS  Google Scholar 

  41. Wille, M. et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 2417–2435 (2007).

    Article  CAS  Google Scholar 

  42. Stüeken, E. E., Buick, R. & Anbar, A. D. Selenium isotopes support free O2 in the latest Archean. Geology 43, 259–262 (2015).

    Article  Google Scholar 

  43. Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

    Article  CAS  Google Scholar 

  44. Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 1045–1048 (2009).

    Article  CAS  Google Scholar 

  45. Flegal, A. R., Settle, D. M. & Patterson, C. C. Thallium in marine plankton. Mar. Biol. 90, 501–503 (1986).

    Article  CAS  Google Scholar 

  46. Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).

    Article  CAS  Google Scholar 

  47. Kristensen, E., Kristiansen, K. D. & Jensen, M. H. Temporal behavior of manganese and iron in a sandy coastal sediment exposed to water column anoxia. Estuaries 26, 690–699 (2003).

    Article  CAS  Google Scholar 

  48. Anbar, A. D. & Holland, H. D. The photochemistry of manganese and the origin of banded iron formations. Geochim. Cosmochim. Acta 56, 2595–2603 (1992).

    Article  CAS  Google Scholar 

  49. Liu, W. et al. Anoxic photogeochemical oxidation of manganese carbonate yields manganese oxide. Proc. Natl Acad. Sci. USA 117, 22698–22704 (2020).

    Article  CAS  Google Scholar 

  50. Daye, M. et al. Light-driven anaerobic microbial oxidation of manganese. Nature 576, 311–314 (2019).

    Article  Google Scholar 

  51. Lyons, T. W., Diamond, C. W. & Konhauser, K. O. Shedding light on manganese cycling in the early oceans. Proc. Natl Acad. Sci. USA 117, 25,960–25,962 (2020).

    Article  CAS  Google Scholar 

  52. Robbins, L. J. et al. Manganese oxides, Earth surface oxygenation, and the rise of oxygenic photosynthesis. Earth Sci. Rev. 239, 104368 (2023).

    Article  CAS  Google Scholar 

  53. Ostrander, C. M. et al. Shale heavy metal isotope records of low environmental O2 between two Archean Oxidation Events. Front. in Earth Sci. 10, 833609 (2022).

    Article  Google Scholar 

  54. Baker, R. G. A., Rehkämper, M., Hinkley, T. K., Nielsen, S. G. & Toutain, J. P. Investigation of thallium fluxes from subaerial volcanism—implications for the present and past mass-balance of thallium in the oceans. Geochim. Cosmochim. Acta 73, 6340–6359 (2009).

    Article  CAS  Google Scholar 

  55. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  CAS  Google Scholar 

  56. Gumsley, A. P. et al. Timing and tempo of the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017).

    Article  CAS  Google Scholar 

  57. Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).

    Article  CAS  Google Scholar 

  58. Meixnerová, J. et al. Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean “whiff” of oxygen. Proc. Natl Acad. Sci. USA 118, e2107511118 (2021).

    Article  Google Scholar 

  59. Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).

    Article  CAS  Google Scholar 

  60. Zhelezinskaia I. Sulfur Isotopic Records in Neoarchean Carbonates: Implications for the Early Precambrian Sulfur Cycle (University of Maryland, 2018).

  61. Nielsen, S. G., Rehkämper, M., Baker, J. & Halliday, A. N. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chem. Geol. 204, 109–124 (2004).

    Article  CAS  Google Scholar 

  62. Ostrander, C. M., Owens, J. D. & Nielsen, S. G. Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma). Sci. Adv. 3, e1701020 (2017).

    Article  Google Scholar 

  63. Nielsen, S. G., Rehkämper, M. & Prytulak, J. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem. 82, 759–798 (2017).

    Article  CAS  Google Scholar 

  64. Bowman, C. N. et al. Linking the progressive expansion of reducing conditions to a stepwise mass extinction event in the late Silurian oceans. Geology 47, 968–972 (2019).

    Article  CAS  Google Scholar 

  65. Chen X. et al. Transient marine bottom water oxygenation on continental shelves by 2.65 billion years ago. Figshare https://doi.org/10.6084/m9.figshare.25212152 (2025).

Download references

Acknowledgements

G. White is thanked for instrumentation troubleshooting at the MagLab. This work was supported by National Aeronautics and Space Administration 80NSSC18K1532 (J.D.O.), 19-ICAR19_2-0007 (A.D.A.) and 80NSSC22K1628 (C.M.O. and S.G.N.) and the Sloan Foundation FG-2020–13552 (J.D.O.), and a portion of this work was performed at the National High Magnetic Field Laboratory in Tallahassee, Florida, which is supported by the National Science Foundation Cooperative Agreement No. DMR-1644779 and by the State of Florida.

Author information

Authors and Affiliations

Authors

Contributions

X.C. and J.D.O. developed the project idea. X.C. and B.J.H. processed samples and performed thallium isotope analyses with contributions from J.D.O. X.C., C.M.O. and J.D.O. wrote the paper with contributions from S.G.N., B.K. and A.D.A.

Corresponding author

Correspondence to Xinming Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks James Kasting, Weiqiang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Supplementary Tables 1–3

Supplementary Table 1. Iron speciation, Mo concentration, authigenic Tl concentration and isotopic compositions for AIDP2 and AIDP3; iron speciation, Mo and Re concentrations and authigenic Tl concentration and isotopic compositions in GKP01 and GKF01; thallium isotopic compositions in AIDP2, AIDP3, GKP01 and GKF01. Supplementary Table 2. Sulfur isotope data in AIDP2, AIDP3, GKP01 and GKF01. Supplementary Table 3. Tl isotopic compositions in ABDP-9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ostrander, C.M., Holdaway, B.J. et al. Transient marine bottom water oxygenation on continental shelves by 2.65 billion years ago. Nat. Geosci. 18, 423–429 (2025). https://doi.org/10.1038/s41561-025-01681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-025-01681-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing