Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maximizing the value of twin studies in health and behaviour

Abstract

In the classical twin design, researchers compare trait resemblance in cohorts of identical and non-identical twins to understand how genetic and environmental factors correlate with resemblance in behaviour and other phenotypes. The twin design is also a valuable tool for studying causality, intergenerational transmission, and gene–environment correlation and interaction. Here we review recent developments in twin studies, recent results from twin studies of new phenotypes and recent insights into twinning. We ask whether the results of existing twin studies are representative of the general population and of global diversity, and we conclude that stronger efforts to increase representativeness are needed. We provide an updated overview of twin concordance and discordance for major diseases and mental disorders, which conveys a crucial message: genetic influences are not as deterministic as many believe. This has important implications for public understanding of genetic risk prediction tools, as the accuracy of genetic predictions can never exceed identical twin concordance rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Path diagram of a twins-and-parents design plus PGSs to disentangle genetic and cultural transmission.
Fig. 2: Concordance rates in twins.
Fig. 3: Path diagram for a time-dependent process.
Fig. 4: The threshold GRM approach.

Similar content being viewed by others

Code availability

The code to reproduce Fig. 2b is available on GitHub: https://github.com/KuznetsovDima/NATHUMBEHAV-22123354/.

References

  1. Boomsma, D., Busjahn, A. & Peltonen, L. Classical twin studies and beyond. Nat. Rev. Genet. 3, 872–882 (2002).

    CAS  PubMed  Google Scholar 

  2. Craig, J. M., Calais-Ferreira, L., Umstad, M. P. & Buchwald, D. The value of twins for health and medical research: a third of a century of progress. Twin Res. Hum. Genet. 23, 8–15 (2020).

    PubMed  Google Scholar 

  3. Falconer, D. S. & Mackay, T. F. Introduction to Quantitative Genetics (Prentice Hall, 1996).

  4. McGue, M. When assessing twin concordance, use the probandwise not the pairwise rate. Schizophr. Bull. 18, 171–176 (1992).

    CAS  PubMed  Google Scholar 

  5. Visscher, P. M. & Wray, N. R. Concepts and misconceptions about the polygenic additive model applied to disease. Hum. Hered. 80, 165–170 (2015).

    CAS  PubMed  Google Scholar 

  6. Falconer, D. S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet 29, 51–76 (1965).

    Google Scholar 

  7. Smith, C. Heritability of liability and concordance in monozygous twins. Ann. Hum. Genet. 34, 85–91 (1970).

    CAS  PubMed  Google Scholar 

  8. Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. Lancet 388, 86–97 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Marion, M. C. et al. Nucleic acid-sensing and interferon-inducible pathways show differential methylation in MZ twins discordant for lupus and overexpression in independent lupus samples: implications for pathogenic mechanism and drug targeting. Genes 12, 1898 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Castellani, C. A. et al. DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Med. Genomics 8, 17 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Konki, M. et al. Peripheral blood DNA methylation differences in twin pairs discordant for Alzheimer’s disease. Clin. Epigenet. 11, 130 (2019).

    CAS  Google Scholar 

  12. Kazuno, A. et al. Proteomic analysis of lymphoblastoid cells derived from monozygotic twins discordant for bipolar disorder: a preliminary study. PLoS ONE 8, e53855 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Hanlon, T. P. et al. Plasma proteomic profiles from disease-discordant monozygotic twins suggest that molecular pathways are shared in multiple systemic autoimmune diseases. Arthritis Res. Ther. 13, R181 (2011).

    PubMed  PubMed Central  Google Scholar 

  14. Muniandy, M. et al. Plasma metabolites reveal distinct profiles associating with different metabolic risk factors in monozygotic twin pairs. Int J. Obes. 43, 487–502 (2019).

    CAS  Google Scholar 

  15. Tsang, T. M., Huang, J. T.-J., Holmes, E. & Bahn, S. Metabolic profiling of plasma from discordant schizophrenia twins: correlation between lipid signals and global functioning in female schizophrenia patients. J. Proteome Res. 5, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  16. Bondia‐Pons, I. et al. Metabolome and fecal microbiota in monozygotic twin pairs discordant for weight: a Big Mac challenge. FASEB J. 28, 4169–4179 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Zhu, Y. et al. Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: a monozygotic discordant twin study. Transl. Psychiatry 9, 215 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vitaro, F., Brendgen, M. & Arseneault, L. The discordant MZ-twin method: one step closer to the holy grail of causality. Int. J. Behav. Dev. 33, 376–382 (2009).

    Google Scholar 

  19. Vink, J. M. et al. Differential gene expression patterns between smokers and non-smokers: cause or consequence? Addict. Biol. 22, 550–560 (2017).

    CAS  PubMed  Google Scholar 

  20. Goldman, S. M. et al. Concordance for Parkinson’s disease in twins: a 20‐year update. Ann. Neurol. 85, 600–605 (2019).

    PubMed  Google Scholar 

  21. Tanner, C. M. et al. Parkinson disease in twins: an etiologic study. JAMA 281, 341–346 (1999).

    CAS  PubMed  Google Scholar 

  22. Plomin, R., DeFries, J. C., Knopik, V. S. & Neiderhiser, J. M. Behavioral Genetics (Worth, 2012).

  23. Willoughby, E. A., Polderman, T. J. C. & Boutwell, B. B. Behavioural genetics methods. Nat. Rev. Methods Prim. 3, 11 (2023).

    Google Scholar 

  24. Christensen, K. & McGue, M. in Twin Research for Everyone (eds Tarnoki, A. et al.) 439–456 (Academic Press, 2022).

  25. Willemsen, G., Odintsova, V., de Geus, E. & Boomsma, D. I. in Twin and Higher-Order Pregnancies (eds Khalil, A. et al.) 51–71 (Springer International, 2021).

  26. de Geus, E. J. C., Posthuma, D., IJzerman, R. G. & Boomsma, D. I. Comparing blood pressure of twins and their singleton siblings: being a twin does not affect adult blood pressure. Twin Res. 4, 385–391 (2001).

    PubMed  Google Scholar 

  27. Christensen, K. et al. Comparison of academic performance of twins and singletons in adolescence: follow-up study. Br. Med. J. 333, 1095 (2006).

    Google Scholar 

  28. Barnes, J. C. & Boutwell, B. B. A demonstration of the generalizability of twin-based research on antisocial behavior. Behav. Genet. 43, 120–131 (2013).

    CAS  PubMed  Google Scholar 

  29. Johnson, W., Krueger, R. F., Bouchard, T. J. & McGue, M. The personalities of twins: just ordinary folks. Twin Res. Hum. Genet. 5, 125–131 (2002).

    Google Scholar 

  30. Kendler, K. S., Ohlsson, H., Lichtenstein, P., Sundquist, J. & Sundquist, K. The genetic epidemiology of treated major depression in Sweden. Am. J. Psychiatry 175, 1137–1144 (2018).

    PubMed  Google Scholar 

  31. Johnson, B. N. et al. Male microchimerism in females: a quantitative study of twin pedigrees to investigate mechanisms. Hum. Reprod. 36, 2529–2537 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mook-Kanamori, D. O. et al. Heritability estimates of body size in fetal life and early childhood. PLoS ONE 7, e39901 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Silventoinen, K., Magnusson, P. K. E., Tynelius, P., Kaprio, J. & Rasmussen, F. Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet. Epidemiol. 32, 341–349 (2008).

    PubMed  Google Scholar 

  34. Estourgie-van Burk, G. F., Bartels, M., Boomsma, D. I. & Delemarre-van de Waal, H. A. Body size of twins compared with siblings and the general population: from birth to late adolescence. J. Pediatr. 156, 586–591 (2010).

    PubMed  Google Scholar 

  35. Beck, J. J. et al. Genetic meta-analysis of twin birth weight shows high genetic correlation with singleton birth weight. Hum. Mol. Genet. 30, 1894–1905 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lykken, D. T. Research with twins: the concept of emergenesis. Psychophysiology 19, 361–372 (1982).

    CAS  PubMed  Google Scholar 

  37. Jonsson, H. et al. Differences between germline genomes of monozygotic twins. Nat. Genet. 53, 27–34 (2021).

    CAS  PubMed  Google Scholar 

  38. Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Veltman, J. A. & Brunner, H. G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012).

    CAS  PubMed  Google Scholar 

  40. Francioli, L. C. et al. Genome-wide patterns and properties of de novo mutations in humans. Nat. Genet. 47, 822–826 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dolan, C. V., Huijskens, R. C. A., Minică, C. C., Neale, M. C. & Boomsma, D. I. Incorporating polygenic risk scores in the ACE twin model to estimate A–C covariance. Behav. Genet. 51, 237–249 (2021).

    PubMed  PubMed Central  Google Scholar 

  42. Dolan, C. V., de Kort, J. M., van Beijsterveldt, T. C. E. M., Bartels, M. & Boomsma, D. I. GE covariance through phenotype to environment transmission: an assessment in longitudinal twin data and application to childhood anxiety. Behav. Genet. 44, 240–253 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Wang, B. et al. Robust genetic nurture effects on education: a systematic review and meta-analysis based on 38,654 families across 8 cohorts. Am. J. Hum. Genet. 108, 1780–1791 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. D’Onofrio, B. M. et al. The role of the children of twins design in elucidating causal relations between parent characteristics and child outcomes. J. Child Psychol. Psychiatry 44, 1130–1144 (2003).

    PubMed  Google Scholar 

  45. McAdams, T. A. et al. Revisiting the children-of-twins design: improving existing models for the exploration of intergenerational associations. Behav. Genet. 48, 397–412 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. McAdams, T. A. et al. Accounting for genetic and environmental confounds in associations between parent and child characteristics: a systematic review of children-of-twins studies. Psychol. Bull. 140, 1138–1173 (2014).

    PubMed  Google Scholar 

  47. Balbona, J. V., Kim, Y. & Keller, M. C. Estimation of parental effects using polygenic scores. Behav. Genet. 51, 264–278 (2021).

    PubMed  PubMed Central  Google Scholar 

  48. Balbona, J. V., Kim, Y. & Keller, M. C. The estimation of environmental and genetic parental influences. Dev. Psychopathol. 34, 1876–1886 (2022).

    Google Scholar 

  49. Conley, D. et al. Is the effect of parental education on offspring biased or moderated by genotype? Sociol. Sci. 2, 82–105 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Hart, S. A., Little, C. & van Bergen, E. Nurture might be nature: cautionary tales and proposed solutions. NPJ Sci. Learn. 6, 2 (2021).

    PubMed  PubMed Central  Google Scholar 

  51. Willoughby, E. A., McGue, M., Iacono, W. G., Rustichini, A. & Lee, J. J. The role of parental genotype in predicting offspring years of education: evidence for genetic nurture. Mol. Psychiatry 26, 3896–3904 (2021).

    PubMed  Google Scholar 

  52. de Vries, L. P. et al. Gene-by-crisis interaction for optimism and meaning in life: the effects of the COVID-19 pandemic. Behav. Genet. 52, 13–25 (2022).

    PubMed  Google Scholar 

  53. Purcell, S. Variance components models for gene–environment interaction in twin analysis. Twin Res. 5, 554–571 (2002).

    PubMed  Google Scholar 

  54. van der Sluis, S., Posthuma, D. & Dolan, C. V. A note on false positives and power in G × E modelling of twin data. Behav. Genet. 42, 170–186 (2012).

    PubMed  Google Scholar 

  55. Molenaar, D., van der Sluis, S., Boomsma, D. I. & Dolan, C. V. Detecting specific genotype by environment interactions using marginal maximum likelihood estimation in the classical twin design. Behav. Genet 42, 483–499 (2012).

    PubMed  Google Scholar 

  56. Jinks, J. L. & Fulker, D. W. Comparison of the biometrical genetical, MAVA, and classical approaches to the analysis of human behavior. Psychol. Bull. 73, 311–349 (1970).

    CAS  PubMed  Google Scholar 

  57. van der Sluis, S., Dolan, C. V., Neale, M. C., Boomsma, D. I. & Posthuma, D. Detecting genotype–environment interaction in monozygotic twin data: comparing the Jinks and Fulker test and a new test based on marginal maximum likelihood estimation. Twin Res. Hum. Genet. 9, 377–392 (2006).

    PubMed  Google Scholar 

  58. Plomin, R., DeFries, J. C. & Loehlin, J. C. Genotype–environment interaction and correlation in the analysis of human behavior. Psychol. Bull. 84, 309–322 (1977).

    CAS  PubMed  Google Scholar 

  59. Eaves, L. A model for sibling effects in man. Heredity 36, 205–214 (1976).

    CAS  PubMed  Google Scholar 

  60. Hunter, M. D. Multilevel modeling in classical twin and modern molecular behavior genetics. Behav. Genet. 51, 301–318 (2021).

    PubMed  Google Scholar 

  61. Tamimy, Z. et al. Multilevel twin models: geographical region as a third level variable. Behav. Genet. 51, 319–330 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Heath, A. C. et al. Testing hypotheses about direction of causation using cross-sectional family data. Behav. Genet. 23, 29–50 (1993).

    CAS  PubMed  Google Scholar 

  64. Castro-de-Araujo, L. F. S. et al. MR-DoC2: bidirectional causal modeling with instrumental variables and data from relatives. Behav. Genet. 53, 63–73 (2022).

    PubMed  PubMed Central  Google Scholar 

  65. Minică, C. C., Dolan, C. V., Boomsma, D. I., de Geus, E. & Neale, M. C. Extending causality tests with genetic instruments: an integration of Mendelian randomization with the classical twin design. Behav. Genet. 48, 337–349 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Evans, L. M. et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat. Genet. 50, 737–745 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zaitlen, N. et al. Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genet. 9, e1003520 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ouwens, K. G. et al. A characterization of cis- and trans-heritability of RNA-seq-based gene expression. Eur. J. Hum. Genet. 28, 253–263 (2020).

    CAS  PubMed  Google Scholar 

  69. Hagenbeek, F. A. et al. Heritability estimates for 361 blood metabolites across 40 genome-wide association studies. Nat. Commun. 11, 39 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hall, J. G. Twinning. Lancet 362, 735–743 (2003).

    PubMed  Google Scholar 

  71. Bulmer, M. G. The Biology of Twinning in Man (Clarendon, 1970).

  72. Lewis, C. M., Healey, S. C. & Martin, N. G. Genetic contribution to DZ twinning. Am. J. Med. Genet. 61, 237–246 (1996).

    CAS  PubMed  Google Scholar 

  73. Meulemans, W. J. et al. Genetic modelling of dizygotic twinning in pedigrees of spontaneous dizygotic twins. Am. J. Med. Genet. 61, 258–263 (1996).

    CAS  PubMed  Google Scholar 

  74. Duffy, D. L. & Martin, N. G. The heritability of twinning in seven large historic pedigrees. Twin Res. Hum. Genet. 25, 63–66 (2022).

    PubMed  Google Scholar 

  75. Mbarek, H. et al. Identification of common genetic variants influencing spontaneous dizygotic twinning and female fertility. Am. J. Hum. Genet. 98, 898–908 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. van Dongen, J. et al. Identical twins carry a persistent epigenetic signature of early genome programming. Nat. Commun. 12, 5618 (2021).

    PubMed  PubMed Central  Google Scholar 

  77. Levi, S. Ultrasonic assessment of the high rate of human multiple pregnancy in the first trimester. J. Clin. Ultrasound 4, 3–5 (1976).

    CAS  PubMed  Google Scholar 

  78. Hall, J. G. The mystery of monozygotic twinning I: what can amyoplasia tell us about monozygotic twinning and the possible role of twin–twin transfusion? Am. J. Med. Genet. A 185, 1816–1821 (2021).

    PubMed  Google Scholar 

  79. Eaves, L. J. & Eysenck, H. J. Genetics and the development of social attitudes. Nature 249, 288–289 (1974).

    CAS  PubMed  Google Scholar 

  80. Taubman, P. Earnings, education, genetics, and environment. J. Hum. Resour. 11, 447–461 (1976).

    CAS  PubMed  Google Scholar 

  81. Cesarini, D. et al. Heritability of cooperative behavior in the trust game. Proc. Natl Acad. Sci. USA 105, 3721–3726 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hatemi, P. K. et al. Genetic influences on political ideologies: twin analyses of 19 measures of political ideologies from five democracies and genome-wide findings from three populations. Behav. Genet. 44, 282–294 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Williams, F. M. K. et al. Self-reported symptoms of COVID-19, including symptoms most predictive of SARS-CoV-2 infection, are heritable. Twin Res. Hum. Genet. 23, 316–321 (2020).

    PubMed  Google Scholar 

  84. Baird, P. N. & Hysi, P. Twin registries moving forward and meeting the future: a review. Twin Res. Hum. Genet. 22, 201–209 (2019).

    PubMed  Google Scholar 

  85. Geserick, M. et al. Acceleration of BMI in early childhood and risk of sustained obesity. N. Engl. J. Med. 379, 1303–1312 (2018).

    PubMed  Google Scholar 

  86. Elks, C. et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front. Endocrinol. 3, 29 (2012).

    Google Scholar 

  87. Huston, A. C. From research to policy and back. Child Dev. 79, 1–12 (2008).

    PubMed  Google Scholar 

  88. Bird, S., Segall, I. & Lopatka, M. Replication: why we still can’t browse in peace—on the uniqueness and reidentifiability of web browsing histories. in Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020), 489–503 (USENIX Association, 2020).

  89. Olejnik, L., Castelluccia, C. & Janc, A. Why Johnny can’t browse in peace: on the uniqueness of web browsing history patterns. In 5th Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2012), hal-00747841 (2012).

  90. Eichstaedt, J. C. et al. Facebook language predicts depression in medical records. Proc. Natl Acad. Sci. USA 115, 11203–11208 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Long, E. C. et al. The genetic and environmental contributions to internet use and associations with psychopathology: a twin study. Twin Res. Hum. Genet 19, 1–9 (2016).

    PubMed  Google Scholar 

  92. Langner, I., Garbe, E., Banaschewski, T. & Mikolajczyk, R. T. Twin and sibling studies using health insurance data: the example of attention deficit/hyperactivity disorder (ADHD). PLoS ONE 8, e62177 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    CAS  PubMed  Google Scholar 

  94. Borsboom, D. & Cramer, A. O. J. Network analysis: an integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 9, 91–121 (2013).

    PubMed  Google Scholar 

  95. Koenis, M. M. G. et al. Association between structural brain network efficiency and intelligence increases during adolescence. Hum. Brain Mapp. 39, 822–836 (2018).

    PubMed  Google Scholar 

  96. Koenis, M. M. G. et al. Development of the brain’s structural network efficiency in early adolescence: a longitudinal DTI twin study. Hum. Brain Mapp. 36, 4938–4953 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Bohlken, M. M. et al. Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry 73, 11–19 (2016).

    PubMed  Google Scholar 

  98. Olatunji, B. O., Christian, C., Strachan, E. & Levinson, C. A. Central and peripheral symptoms in network analysis are differentially heritable: a twin study of anxious misery. J. Affect. Disord. 274, 986–994 (2020).

    PubMed  Google Scholar 

  99. Forbes, M. K., Wright, A. G. C., Markon, K. E. & Krueger, R. F. Quantifying the reliability and replicability of psychopathology network characteristics. Multivar. Behav. Res. 56, 224–242 (2021).

    Google Scholar 

  100. Fried, E. I. & Cramer, A. O. J. Moving forward: challenges and directions for psychopathological network theory and methodology. Perspect. Psychol. Sci. 12, 999–1020 (2017).

    PubMed  Google Scholar 

  101. Zhang, H. The review of transcriptome sequencing: principles, history and advances. IOP Conf. Ser. Earth Environ. Sci. 332, 042003 (2019).

    Google Scholar 

  102. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wright, F. A. et al. Heritability and genomics of gene expression in peripheral blood. Nat. Genet. 46, 430–437 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Aristizabal, M. J. et al. Biological embedding of experience: a primer on epigenetics. Proc. Natl Acad. Sci. USA 117, 23261–23269 (2020).

    CAS  PubMed  Google Scholar 

  105. van Dongen, J. et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun. 7, 11115 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Li, S. et al. Early life affects late-life health through determining DNA methylation across the lifespan: a twin study. eBioMedicine 77, 103927 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, Y. et al. Quantitative variability of 342 plasma proteins in a human twin population. Mol. Syst. Biol. 11, 786 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Menni, C. et al. Glycosylation of immunoglobulin G: role of genetic and epigenetic influences. PLoS ONE 8, e82558 (2013).

    PubMed  PubMed Central  Google Scholar 

  109. Zaytseva, O. O. et al. Heritability of human plasma N-glycome. J. Proteome Res. 19, 85–91 (2020).

    CAS  PubMed  Google Scholar 

  110. Yang, Q. et al. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv. 9, 37245–37257 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Pool, R. et al. Genetics and not shared environment explains familial resemblance in adult metabolomics data. Twin Res. Hum. Genet. 23, 145–155 (2020).

    PubMed  Google Scholar 

  112. Shin, S.-Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bermingham, K. M. et al. Genetic and environmental contributions to variation in the stable urinary NMR metabolome over time: a classic twin study. J. Proteome Res. 20, 3992–4000 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hagenbeek, F. A. et al. Heritability of urinary amines, organic acids, and steroid hormones in children. Metabolites 12, 474 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Duruflé, H. et al. A powerful framework for an integrative study with heterogeneous omics data: from univariate statistics to multi-block analysis. Brief. Bioinform. 22, bbaa166 (2021).

    PubMed  Google Scholar 

  117. Hur, Y.-M., Odintsova, V. V., Ordoñana, J. R., Silventoinen, K. & Willemsen, G. in Twin Research for Everyone (eds Tarnoki, A. et al.) 23–50 (Academic Press, 2022).

  118. Silventoinen, K. et al. The CODATwins Project: the current status and recent findings of COllaborative Project of Development of Anthropometrical Measures in Twins. Twin Res. Hum. Genet. 22, 800–808 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Odintsova, V. V. et al. Establishing a twin register: an invaluable resource for (behavior) genetic, epidemiological, biomarker, and ‘omics’ studies. Twin Res. Hum. Genet. 21, 239–252 (2018).

    PubMed  Google Scholar 

  120. Boutwell, B. B., Narvey, C. S., Helton, J. J. & Piquero, A. R. Why twin studies are important for health span science research: the case of maltreatment of aging adults. BMC Geriatr. 22, 943 (2022).

    PubMed  PubMed Central  Google Scholar 

  121. Austerberry, C., Mateen, M., Fearon, P. & Ronald, A. Heritability of psychological traits and developmental milestones in infancy: a systematic review and meta-analysis. JAMA Netw. Open 5, e2227887 (2022).

    PubMed  PubMed Central  Google Scholar 

  122. Polderman, T. J. C. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat. Genet. 47, 702–709 (2015).

    CAS  PubMed  Google Scholar 

  123. Hur, Y.-M. et al. A comparison of twin birthweight data from Australia, the Netherlands, the United States, Japan, and South Korea: are genetic and environmental variations in birthweight similar in Caucasians and East Asians? Twin Res. Hum. Genet. 8, 638–648 (2005).

    PubMed  Google Scholar 

  124. Laursen, M. et al. Genetic influence on prolonged gestation: a population-based Danish twin study. Am. J. Obstet. Gynecol. 190, 489–494 (2004).

    PubMed  Google Scholar 

  125. Garrett-Bakelman, F. E. et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Vinkhuyzen, A. A. E., Van Der Sluis, S., De Geus, E. J. C., Boomsma, D. I. & Posthuma, D. Genetic influences on ‘environmental’ factors. Genes Brain Behav. 9, 276–287 (2010).

    CAS  PubMed  Google Scholar 

  127. Friedman, N. P., Banich, M. T. & Keller, M. C. Twin studies to GWAS: there and back again. Trends Cogn. Sci. 25, 855–869 (2021).

    PubMed  PubMed Central  Google Scholar 

  128. Hatemi, P. K. The intersection of behavioral genetics and political science: introduction to the special issue. Twin Res. Hum. Genet. 15, 1–5 (2012).

    PubMed  Google Scholar 

  129. Cesarini, D. & Visscher, P. M. Genetics and educational attainment. NPJ Sci. Learn. 2, 4 (2017).

    PubMed  PubMed Central  Google Scholar 

  130. Plomin, R. The next 10 years of behavioural genomic research. JCPP Adv. 2, e12112 (2022).

Download references

Acknowledgements

We thank N. G. Martin, C. V. Dolan, J. Couvée and J. van Dongen for their valuable contributions to the draft versions of this manuscript. The current work is supported by the Royal Netherlands Academy of Science Professor Award (no. PAH/6635) to D.I.B. The funder had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D.I.B. Funding acquisition: D.I.B. Project administration: F.A.H. and D.I.B. Supervision: D.I.B. Visualization: F.A.H., S. Bruins, D.V.K. and V.V.O. Writing—original draft: all authors. Writing—review and editing: all authors. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Fiona A. Hagenbeek or Dorret I. Boomsma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagenbeek, F.A., Hirzinger, J.S., Breunig, S. et al. Maximizing the value of twin studies in health and behaviour. Nat Hum Behav 7, 849–860 (2023). https://doi.org/10.1038/s41562-023-01609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01609-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing