Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene-level analysis reveals the genetic aetiology and therapeutic targets of schizophrenia

Abstract

Genome-wide association studies (GWASs) have reported multiple risk loci for schizophrenia (SCZ). However, the majority of the associations were from populations of European ancestry. Here we conducted a large-scale GWAS in Eastern Asian populations (29,519 cases and 44,392 controls) and identified ten Eastern Asian-specific risk loci, two of which have not been previously reported. A further cross-ancestry GWAS meta-analysis (96,806 cases and 492,818 controls) including populations from diverse ancestries identified 61 previously unreported risk loci. Systematic variant-level analysis, including fine mapping, functional genomics and expression quantitative trait loci, prioritized potential causal variants. Gene-level analyses, including transcriptome-wide association study, proteome-wide association study and Mendelian randomization, nominated the potential causal genes. By integrating evidence from layers of different analyses, we prioritized the most plausible causal genes for SCZ, such as ACE, CNNM2, SNAP91, ABCB9 and GATAD2A. Finally, drug repurposing showed that ACE, CA14, MAPK3 and MAPT are potential therapeutic targets for SCZ. Our study not only showed the power of cross-ancestry GWAS in deciphering the genetic aetiology of SCZ, but also uncovered new genetic risk loci, potential causal variants and genes and therapeutic targets for SCZ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plots of GWASs.
Fig. 2: TF-binding disrupting SNPs and fine-mapping results.
Fig. 3: Transcriptome-wide and proteome-wide association results.
Fig. 4: Drug targets identified by MR analysis.
Fig. 5: Gene prioritization results.
Fig. 6: SynGO enrichment of high-confidence risk genes.

Similar content being viewed by others

Data availability

The genome-wide summary statistics of the SCZ (PGC3) are available via Figshare at https://doi.org/10.6084/m9.figshare.19426775.v6 (ref. 81). The genome-wide summary statistics of the EAS are available via Figshare at https://doi.org/10.6084/m9.figshare.19193084.v1 (ref. 82). The genome-wide summary statistics of the FinnGen are available at https://storage.googleapis.com/finngen-public-data-r9/summary_stats/. The SNP expression weights of PsychENCODE used in this study are available at http://resource.psychencode.org/. The processed protein weight files are available via the Synapse portal (Synapse IDs syn9884314 and syn23245237). The PsychENCODE cis-eQTL data are available via the SMR website at https://yanglab.westlake.edu.cn/data/SMR/PsychENCODE_cis_eqtl_HCP100_summary.tar.gz. The gene expression data used for MAGMA were from the Genotype-Tissue Expression (GTEx) consortium, GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9. All Gene Ontology terms (including cellular components, biological processes and molecular functions) and Kyoto Encyclopedia of Genes and Genomes pathway gene sets are available via the MSigDB database at https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp#C5. The BrainMeta V2 eQTL data are available via the BrainMeta portal at https://yanglab.westlake.edu.cn/data/SMR/BrainMeta_cis_eqtl_summary.tar.gz. Genome-wide summary statistics for EUR-ancestry meta-analysis of SCZ (59,901 cases and 441,418 controls) and GWAS summary statistics for cross-ancestry meta-analysis of SCZ (excluding the Chinese population, a total of 90,065 cases and 483,788 controls) are available via Figshare at https://doi.org/10.6084/m9.figshare.27313227 (ref. 83). The GWAS dataset for the Chinese population can be requested from the China National Genomics Data Center (https://ngdc.cncb.ac.cn/), with the data accession number OMIX005075.

References

  1. Saha, S., Chant, D., Welham, J. & McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2, e141 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Owen, M. J., Sawa, A. & Mortensen, P. B. Schizophrenia. Lancet 388, 86–97 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sullivan, P. F., Kendler, K. S. & Neale, M. C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).

    Article  PubMed  Google Scholar 

  4. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yu, H. et al. Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population. Mol. Psychiatry 22, 954–960 (2017).

    Article  PubMed  Google Scholar 

  8. Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet. 49, 1576–1583 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

  10. Hamshere, M. L. et al. Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol. Psychiatry 18, 708–712 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Shi, Y. et al. Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nat. Genet. 43, 1224–1227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schizophrenia Psychiatric Genome-Wide Association Study Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).

  13. Stefansson, H. et al. Common variants conferring risk of schizophrenia. Nature 460, 744–747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. O’Donovan, M. C. et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 40, 1053–1055 (2008).

    Article  PubMed  Google Scholar 

  16. Liu, J. et al. Genome-wide association study followed by trans-ancestry meta-analysis identify 17 new risk loci for schizophrenia. BMC Med. 19, 177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ikeda, M. et al. Genome-wide association study detected novel susceptibility genes for schizophrenia and shared trans-populations/diseases genetic effect. Schizophr. Bull. 45, 824–834 (2019).

    Article  PubMed  Google Scholar 

  18. Hamdan, F. F. et al. Mutations in SYNGAP1 in autosomal non-syndromic mental retardation. N. Engl. J. Med. 360, 599–605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clement, J. P. et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 151, 709–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aceti, M. et al. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol. Psychiatry 77, 805–815 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Berryer, M. H. et al. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat. Commun. 7, 13340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carreno-Munoz, M. I. et al. Sensory processing dysregulations as reliable translational biomarkers in SYNGAP1 haploinsufficiency. Brain 145, 754–769 (2022).

    Article  PubMed  Google Scholar 

  23. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).

    Article  Google Scholar 

  24. Lim, Y. S. & Tang, B. L. The Evi5 family in cellular physiology and pathology. FEBS Lett. 587, 1703–1710 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Itoh, T., Satoh, M., Kanno, E. & Fukuda, M. Screening for target Rabs of TBC (Tre-2/Bub2/Cdc16) ___domain-containing proteins based on their Rab-binding activity. Genes Cells 11, 1023–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Forde, A., Hemani, G. & Ferguson, J. Review and further developments in statistical corrections for winner’s curse in genetic association studies. PLoS Genet. 19, e1010546 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song, J. et al. The impact of educational attainment, intelligence and intellectual disability on schizophrenia: a Swedish population-based register and genetic study. Mol. Psychiatry 27, 2439–2447 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models using summary statistics. Nat. Genet. 52, 458–462 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Huo, Y., Li, S., Liu, J., Li, X. & Luo, X. J. Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nat. Commun. 10, 670 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishizaki, S. S. et al. Predicting the effects of SNPs on transcription factor binding affinity. Bioinformatics 36, 364–372 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, Z. et al. CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses. Nat. Genet. 55, 1057–1065 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao, B. & Zhou, X. MESuSiE enables scalable and powerful multi-ancestry fine-mapping of causal variants in genome-wide association studies. Nat. Genet. 56, 170–179 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qi, T. et al. Genetic control of RNA splicing and its distinct role in complex trait variation. Nat. Genet. 54, 1355–1363 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: from association to function. Am. J. Hum. Genet 102, 717–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Reay, W. R. & Cairns, M. J. Advancing the use of genome-wide association studies for drug repurposing. Nat. Rev. Genet. 22, 658–671 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt, A. F. et al. Genetic drug target validation using Mendelian randomisation. Nat. Commun. 11, 3255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gaziano, L. et al. Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nat. Med. 27, 668–676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loh, P. R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat. Genet. 47, 1385–1392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc. Natl Acad. Sci. USA 111, E455–E464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Trieu, B. H. et al. Angiotensin-converting enzyme gates brain circuit-specific plasticity via an endogenous opioid. Science 375, 1177–1182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sa, M. et al. Hypothalamic GABRA5-positive neurons control obesity via astrocytic GABA. Nat. Metab. 5, 1506–1525 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Lichter, D. I. et al. Sequence analysis of beta-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone. Blood 120, 4513–4516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sebastian, R. et al. Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids. Nat. Commun. 14, 3770 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Howes, O., McCutcheon, R. & Stone, J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J. Psychopharmacol. 29, 97–115 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pocklington, A. J. et al. Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 86, 1203–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yifan, L. et al. Cross-ancestry genome-wide association study and systems-level integrative analyses implicate new risk genes and therapeutic targets for depression. Preprint at medRxiv https://doi.org/10.1101/2023.02.24.23286411 (2023).

  64. Li, W. et al. Genome-wide meta-analysis, functional genomics and integrative analyses implicate new risk genes and therapeutic targets for anxiety disorders. Nat. Hum. Behav. 8, 361–379 (2023).

  65. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Evans, L. M. et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat. Genet. 50, 737–745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Speed, D. & Balding, D. J. SumHer better estimates the SNP heritability of complex traits from summary statistics. Nat. Genet. 51, 277–284 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Bryois, J. et al. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nat. Genet. 52, 482–493 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wallace, C. Statistical testing of shared genetic control for potentially related traits. Genet. Epidemiol. 37, 802–813 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, R. et al. Functional genomics elucidates regulatory mechanisms of Parkinson’s disease-associated variants. BMC Med. 20, 68 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  74. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  75. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  78. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  79. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zeng, B. et al. Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nat. Genet. 54, 161–169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sullivan, P. et al. Genome-wide summary statistics of the SCZ (PGC3). figshare https://doi.org/10.6084/m9.figshare.19426775.v6 (2022).

  82. Sullivan, P. et al. Genome-wide summary statistics of the EAS. figshare https://doi.org/10.6084/m9.figshare.19193084.v1 (2022).

  83. Dang, X. et al. Summary statistics from the schizophrenia cross-ancestry GWAS meta-analysis. figshare https://doi.org/10.6084/m9.figshare.27313227 (2024).

Download references

Acknowledgements

This study was equally supported by the National Natural Science Foundation of China (U2102205 and U22A20304) and startup funds from Southeast University (RF1028623032). It was also supported by the Special Project for Social Development of Yunnan Province (no. 202203AC100007), Key Research and Development Projects of Henan Province (241111312800 and 235101610004 to W.L.), Intestinal Microbiota Transplantation Engineering Research Center, Yunnan Provincial Department of Education (to Z.T.), the National Natural Science Foundation of China (nos. 82171498, 82230044, 81920108018, U21A20364, 82260276, 82301690, 82371508 and 82371508), the Talent and Fundamental Research Project of Yunnan Province (nos. 202301AY070001-299, 202105AC160004 and 202301AT070037), Key R&D Program of Zhejiang Province (grant number 2022C03096 to T.L.), the Key R & D by Hangzhou Science and Technology Bureau (grant number 20241203A14 to T.L.) and the Construction Fund of Key Medical Disciplines of Hangzhou (OO20200065 to T.L.). We thank Q. Li and Z. Ding for their technical assistance. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

X.-J.L. conceived, designed and supervised the whole study. X.D. performed most of the analyses. Z.T., Y. Yang, W.L., J.L., L.H., D.Z., X.L., L.L., Y.Z., D.G., S.-S.D., Y.L., Y. Yuan, X.M., Z.L. and T.L. contributed to sample collection, genotyping and paper writing. All authors revised the paper critically and approved the final version.

Corresponding authors

Correspondence to Xiancang Ma, Zhongchun Liu, Tao Li or Xiong-Jian Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Stephanie Le Hellard, Derek Morris and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–40.

Reporting Summary

Supplementary Table 1

Supplementary Tables 1–19.

Source Data Table 1

Statistical source data for Supplementary Figs. 31–39.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, X., Teng, Z., Yang, Y. et al. Gene-level analysis reveals the genetic aetiology and therapeutic targets of schizophrenia. Nat Hum Behav 9, 609–624 (2025). https://doi.org/10.1038/s41562-024-02091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-024-02091-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing