Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Delocalizing electron distribution in thermally activated delayed fluorophors for high-efficiency and long-lifetime blue electroluminescence

Abstract

Blue thermally activated delayed fluorescent emitters are promising for the next generation of organic light-emitting diodes, yet their performance still cannot meet the requirements for commercialization. Here we establish a design rule for highly efficient and stable thermally activated delayed fluorescent emitters by introducing an auxiliary acceptor that could delocalize electron distributions, enhancing molecular stability in both the negative polaron and triplet excited state, while also accelerating triplet-to-singlet up-conversion and singlet radiative processes simultaneously. Proof-of-concept thermally activated delayed fluorescent compounds, based on a multi-carbazole-benzonitrile structure, exhibit near-unity photoluminescent quantum yields, short-lived delays and improved photoluminescent and electroluminescent stabilities. A deep-blue organic light-emitting diode using one of these molecules as a sensitizer for a multi-resonance emitter achieves a remarkable time to 95% of initial luminance of 221 h at an initial luminance of 1,000 cd m−2, a maximum external quantum efficiency of 30.8% and Commission Internationale de l’Eclairage coordinates of (0.14, 0.17).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular design and intrinsic stability analysis of the TADF molecules.
Fig. 2: PL properties of the TADF materials.
Fig. 3: Optimized EL properties of TADF-based OLEDs.
Fig. 4: Optimized EL properties of TSF-based OLEDs.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information file. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the CCDC under deposition numbers 2232729, 2232730 and 2232731. These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif. Source data are provided with this paper.

References

  1. Sun, J. et al. Exceptionally stable blue phosphorescent organic light-emitting diodes. Nat. Photon. 16, 212–218 (2022).

    Article  CAS  Google Scholar 

  2. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  CAS  Google Scholar 

  3. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Ma, Y. & Yang, B. Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci. Sin. Chim. 43, 1457–1467 (2013).

    Article  CAS  Google Scholar 

  6. Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).

    Article  Google Scholar 

  7. Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photon. 6, 253–258 (2012).

    Article  CAS  Google Scholar 

  8. Masui, K., Nakanotani, H. & Adachi, C. Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Org. Electron. 14, 2721–2726 (2013).

    Article  CAS  Google Scholar 

  9. Chan, C.-Y. et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photon. 15, 203–207 (2021).

    Article  CAS  Google Scholar 

  10. Zhang, D. et al. Efficient and stable deep‐blue fluorescent organic light‐emitting diodes employing a sensitizer with fast triplet upconversion. Adv. Mater. 32, 1908355 (2020).

    Article  CAS  Google Scholar 

  11. Jeon, S. O. et al. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nat. Photon. 15, 208–215 (2021).

    Article  CAS  Google Scholar 

  12. Kim, E. et al. Highly efficient and stable deep-blue organic light-emitting diode using phosphor-sensitized thermally activated delayed fluorescence. Sci. Adv. 8, eabq1641 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mamada, M. et al. Highly efficient deep‐blue organic light‐emitting diodes based on rational molecular design and device engineering. Adv. Funct. Mater. 32, 2204352 (2022).

    Article  CAS  Google Scholar 

  14. Tanaka, M., Noda, H., Nakanotani, H. & Adachi, C. Effect of carrier balance on device degradation of organic light‐emitting diodes based on thermally activated delayed fluorescence emitters. Adv. Electron. Mater. 5, 1800708 (2019).

    Article  Google Scholar 

  15. Tanaka, M., Nagata, R., Nakanotani, H. & Adachi, C. Understanding degradation of organic light-emitting diodes from magnetic field effects. Commun. Mater. 1, 18 (2020).

    Article  Google Scholar 

  16. Hasan, M. et al. Probing polaron-induced exciton quenching in TADF based organic light-emitting diodes. Nat. Commun. 13, 254 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, D., Cai, M., Zhang, Y., Zhang, D. & Duan, L. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Mater. Horiz. 3, 145–151 (2016).

    Article  CAS  Google Scholar 

  18. Noda, H. et al. Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nat. Mater. 18, 1084–1090 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Cui, L.-S. et al. Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nat. Photon. 14, 636–642 (2020).

    Article  CAS  Google Scholar 

  20. Nakanotani, H. et al. High-efficiency organic light-emitting diodes with fluorescent emitters. Nat. Commun. 5, 4016 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, D. et al. High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet–triplet exchange energy. Adv. Mater. 26, 5050–5055 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, T. et al. Enhancing the efficiency and stability of blue thermally activated delayed fluorescence emitters by perdeuteration. Nat. Photon. 18, 516–523 (2024).

    Article  CAS  Google Scholar 

  23. Nagamura, N. et al. A multifunctional hole-transporter for high-performance TADF OLEDs and clarification of factors governing the transport property by multiscale simulation. J. Mater. Chem. C 10, 8694–8701 (2022).

    Article  CAS  Google Scholar 

  24. Liu, T. et al. Zero–zero energy-dominated degradation in blue organic light-emitting diodes employing thermally activated delayed fluorescence. ACS Appl. Mater. Interfaces 14, 22332–22340 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Ha, T. H., Bin, J.-K. & Lee, C. W. Phenylpyridine and carbazole based host materials for highly efficient blue TADF OLEDs. Org. Electron. 102, 106450 (2022).

    Article  CAS  Google Scholar 

  26. Ahn, D. H. et al. Rigid oxygen‐bridged boron‐based blue thermally activated delayed fluorescence emitter for organic light‐emitting diode: approach towards satisfying high efficiency and long lifetime together. Adv. Opt. Mater. 8, 2000102 (2020).

    Article  CAS  Google Scholar 

  27. Byeon, S. Y., Han, S. H. & Lee, J. Y. Negative polaron‐stabilizing host for improved operational lifetime in blue phosphorescent organic light‐emitting diodes. Adv. Opt. Mater. 5, 1700387 (2017).

    Article  Google Scholar 

  28. Wang, D., Cheng, C., Tsuboi, T. & Zhang, Q. Degradation mechanisms in blue organic light-emitting diodes. CCS Chem. 2, 1278–1296 (2020).

    Article  CAS  Google Scholar 

  29. Wang, R., Meng, Q.-Y., Wang, Y.-L. & Qiao, J. Negative charge management to make fragile bonds less fragile toward electrons for robust organic optoelectronic materials. CCS Chem. 4, 331–343 (2022).

    Article  CAS  Google Scholar 

  30. Lee, H. J., Lee, H. L., Han, S. H. & Lee, J. Y. Novel secondary acceptor based molecular design for superb lifetime in thermally activated delayed fluorescent organic light-emitting diodes through high bond energy and fast up-conversion. Chem. Eng. J. 427, 130988 (2022).

    Article  CAS  Google Scholar 

  31. Ihn, S. et al. An alternative host material for long‐lifespan blue organic light‐emitting diodes using thermally activated delayed fluorescence. Adv. Sci. 4, 1600502 (2017).

    Article  Google Scholar 

  32. Jeon, S. K., Lee, H. L., Yook, K. S. & Lee, J. Y. Recent progress of the lifetime of organic light‐emitting diodes based on thermally activated delayed fluorescent material. Adv. Mater. 31, 1803524 (2019).

    Article  Google Scholar 

  33. Noda, H., Nakanotani, H. & Adachi, C. Excited state engineering for efficient reverse intersystem crossing. Sci. Adv. 4, eaao6910 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chan, C.-Y., Tanaka, M., Nakanotani, H. & Adachi, C. Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4. Nat. Commun. 9, 5036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang, Y. et al. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. Nat. Mater. 7, 483–489 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. De Sio, A. et al. Tracking the coherent generation of polaron pairs in conjugated polymers. Nat. Commun. 7, 13742 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zheng, X. et al. Expanding the hole delocalization range in excited molecules for stable organic light-emitting diodes employing thermally activated delayed fluorescence. J. Mater. Chem. C 8, 10021–10030 (2020).

    Article  CAS  Google Scholar 

  38. Scholz, S., Walzer, K. & Leo, K. Analysis of complete organic semiconductor devices by laser desorption/ionization time-of-flight mass spectrometry. Adv. Funct. Mater. 18, 2541–2547 (2008).

    Article  CAS  Google Scholar 

  39. Schmidbauer, S., Hohenleutner, A. & König, B. Chemical degradation in organic light-emitting devices: mechanisms and implications for the design of new materials. Adv. Mater. 25, 2114–2129 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Ryoo, C. H. et al. Systematic substituent control in blue thermally activated delayed fluorescence (TADF) emitters: unraveling the role of direct intersystem crossing between the same charge‐transfer states. Adv. Opt. Mater. 10, 2201622 (2022).

    Article  CAS  Google Scholar 

  41. Kim, S.-Y. et al. Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv. Funct. Mater. 23, 3896–3900 (2013).

    Article  CAS  Google Scholar 

  42. Song, J., Lee, H., Jeong, E. G., Choi, K. C. & Yoo, S. Organic light‐emitting diodes: pushing toward the limits and beyond. Adv. Mater. 32, 1907539 (2020).

    Article  CAS  Google Scholar 

  43. Chen, Y. et al. Approaching nearly 40% external quantum efficiency in organic light emitting diodes utilizing a green thermally activated delayed fluorescence emitter with an extended linear donor–acceptor–donor structure. Adv. Mater. 33, 2103293 (2021).

    Article  CAS  Google Scholar 

  44. Hong, X. et al. TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. Chem 8, 1705–1719 (2022).

    Article  CAS  Google Scholar 

  45. Freidzon et al. Predicting the operational stability of phosphorescent OLED host molecules from first principles: a case study. J. Phys. Chem. C 121, 22422–22433 (2017).

    Article  CAS  Google Scholar 

  46. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll‐off in organic light‐emitting diodes. Adv. Mater. 25, 6801–6827 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, K. et al. Carbazole‐decorated organoboron emitters with low‐lying HOMO levels for solution‐processed narrowband blue hyperfluorescence OLED devices. Angew. Chem. Int. Ed. 62, e202313084 (2023).

    Article  CAS  Google Scholar 

  48. Stavrou, K., Franca, L. G., Danos, A. & Monkman, A. P. Key requirements for ultraefficient sensitization in hyperfluorescence organic light-emitting diodes. Nat. Photon. 18, 554–561 (2024).

    Article  CAS  Google Scholar 

  49. Kyulux reports rapid progress in emitter performance, is on track for commercial adoption in 2023. Kyulux https://www.kyulux.com/kyulux-reports-rapid-progress-in-emitter-performance-is-on-track-for-commercial-adoption-in-2023/ (2023).

  50. Frisch, M. J. et al. Gaussian 16, revision B.01 (Gaussian, 2016).

  51. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2012).

    Article  CAS  Google Scholar 

  52. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  53. Liu, Z., Lu, T. & Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165, 461–467 (2020).

    Article  CAS  Google Scholar 

  54. Jung, Y. H. et al. Modified t-butyl in tetradentate platinum (II) complexes enables exceptional lifetime for blue-phosphorescent organic light-emitting diodes. Nat. Commun. 15, 2977 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant numbers 52222308 to D.Z. and 22135004 to L.D.), the National Key Research and Development Program (numbers 2022YFB3603002 to T.H. and 2023YFE0203300 to L.D.) and the Guangdong Major Project of Basic and Applied Basic Research (grant number 2019B030302009 to L.D.). We thank J. Qiao and Q. Meng from Tsinghua University for their assistance in calculating BDE values and providing valuable suggestions. We also extend our gratitude to H. Zhong, X. Wu and M. Yang from Beijing Institute of Technology for their support with photoelectrical ageing measurements. Additionally, we thank L. Wang and S. Wang from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, for providing the multi-resonance TADF material t-BuCz-DABNA.

Author information

Authors and Affiliations

Authors

Contributions

L.D. and D.Z. conceived and supervised this work. D.Z. proposed the molecular design concept and designed the experiments. T.H. carried out the quantum chemical calculations and did the main work on materials synthesis, device fabrication and both material and device characterization. Q.W. and H.Z. helped with the synthesis of the materials, while Y.X. and Y.Z. helped measure the device performances. X.C. helped revise the paper. L.D., D.Z. and T.H. discussed the results and wrote and revised the paper with input from all authors.

Corresponding authors

Correspondence to Dongdong Zhang or Lian Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Eli Zysman-Colman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Tables 1–7 and Note 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Wang, Q., Zhang, H. et al. Delocalizing electron distribution in thermally activated delayed fluorophors for high-efficiency and long-lifetime blue electroluminescence. Nat. Mater. 23, 1523–1530 (2024). https://doi.org/10.1038/s41563-024-02004-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-02004-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing