Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Demonstration of efficient Thomson cooler by electronic phase transition

Abstract

In the 1850s, Lord Kelvin predicted the existence of a thermoelectric cooling effect inside a whole material (the Thomson effect) according to thermodynamics1, in addition to the Peltier effect that enables cooling at the junction between dissimilar materials. However, the Thomson effect is usually negligible (ΔT/T < 2%) in conventional thermoelectric materials because the entropy change in charge carriers is fairly small2, leading to the guiding principles for advancing thermoelectric cooling to be based on the framework of the Peltier effect and that the figure of merit ZT should be maximized to optimize performance. Here, we demonstrate a Thomson-effect-enhanced thermoelectric cooler using a large Thomson coefficient (τ) induced by the direct manipulation of charge entropy through an electronic phase transition in YbInCu4. The devices achieve a steady temperature span (ΔT) of >5 K from T = 38 K. Our findings suggest not only another approach to advance thermoelectric coolers in addition to improving ZT but also technologically opens opportunities for solid-state cryogenic cooling applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thomson effect enhancing thermoelectric cooling.
Fig. 2: Electronic phase transition.
Fig. 3: Transport properties of YbInCu4.
Fig. 4: Cooling performance.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are included in this letter and its Supplementary Information or available from the corresponding authors on request. Source data are provided with this paper.

References

  1. Thomson, W. 4. On a mechanical theory of thermo-electric currents. Proc. R. Soc. Edinb. 3, 91–98 (1851).

    Article  Google Scholar 

  2. Lee, H. The Thomson effect and the ideal equation on thermoelectric coolers. Energy 56, 61–69 (2013).

    Article  Google Scholar 

  3. He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017).

    Article  PubMed  Google Scholar 

  4. Han, C. G. et al. Giant thermopower of ionic gelatin near room temperature. Science 368, 1091–1098 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Hinterleitner, B. et al. Thermoelectric performance of a metastable thin-film Heusler alloy. Nature 576, 85–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Q., Deng, K., Wilkens, L., Reith, H. & Nielsch, K. Micro-thermoelectric devices. Nat. Electron. 5, 333–347 (2022).

    Article  Google Scholar 

  8. Rockwood, A. L. Relationship of thermoelectricity to electronic entropy. Phys. Rev. A 30, 2843–2844 (1984).

    Article  CAS  Google Scholar 

  9. Goldsmid, H. J. Introduction to Thermoelectricity (Springer, 2009).

  10. Mao, J., Chen, G. & Ren, Z. Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Snyder, G. J., Toberer, E. S., Khanna, R. & Seifert, W. Improved thermoelectric cooling based on the Thomson effect. Phys. Rev. B 86, 045202–045209 (2012).

    Article  Google Scholar 

  12. Zebarjadi, M. & Akbari, O. A model for material metrics in thermoelectric Thomson coolers. Entropy 25, 1540–1550 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ouerdane, H., Varlamov, A. A., Kavokin, A. V., Goupil, C. & Vining, C. B. Enhanced thermoelectric coupling near electronic phase transition: the role of fluctuation Cooper pairs. Phys. Rev. B 91, 100501–100505 (2015).

    Article  Google Scholar 

  14. Sun, P., Ikeno, T., Mizushima, T. & Isikawa, Y. Simultaneously optimizing the interdependent thermoelectric parameters in Ce(Ni1−xCux)2Al3. Phys. Rev. B 80, 193105–193108 (2009).

    Article  Google Scholar 

  15. Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Chung, D. et al. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science 287, 1024–1027 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ishiwata, S. et al. Extremely high electron mobility in a phonon-glass semimetal. Nat. Mater. 12, 512–517 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Rowe, D. M., Kuznetsov, V. L., Kuznetsova, L. A. & Min, G. Electrical and thermal transport properties of intermediate-valence YbAl3. J. Phys. D: Appl. Phys. 35, 2183–2186 (2002).

    Article  CAS  Google Scholar 

  19. Koirala, M. et al. Nanostructured YbAgCu4 for potentially cryogenic thermoelectric cooling. Nano Lett. 14, 5016–5020 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Kuo, Y. K., Sivakumar, K. M., Su, T. H. & Lue, C. S. Phase transitions in Lu2Ir3Si5: an experimental investigation by transport measurements. Phys. Rev. B 74, 045115–045119 (2006).

    Article  Google Scholar 

  21. Akhanda, M. S. et al. Phase-transition-induced thermal hysteresis in type-II Weyl semimetals MoTe2 and Mo1−xWxTe2. Mater. Today Phys. 29, 100918–100924 (2022).

    Article  CAS  Google Scholar 

  22. Modak, R. et al. Phase-transition-induced giant Thomson effect for thermoelectric cooling. Appl. Phys. Rev. 9, 011414–011422 (2022).

    Article  CAS  Google Scholar 

  23. Nakagawa, K., Yokouchi, T. & Shiomi, Y. Reconfigurable single-material Peltier effect using magnetic-phase junctions. Sci. Rep. 11, 24216–24224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Byeon, D. et al. Discovery of colossal Seebeck effect in metallic Cu2Se. Nat. Commun. 10, 72 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown, D. R. et al. Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. APL Mater. 1, 052107–052116 (2013).

    Article  Google Scholar 

  26. Liu, H. et al. Structure-transformation-induced abnormal thermoelectric properties in semiconductor copper selenide. Mater. Lett. 93, 121–124 (2013).

    Article  CAS  Google Scholar 

  27. Mushnikov, N. V. Magnetic and magnetoelastic properties of valence transition compounds based on YbInCu4 (review article). Low Temp. Phys. 41, 946–964 (2015).

    Article  CAS  Google Scholar 

  28. Jarrige, I. et al. Kondo interactions from band reconstruction in YbInCu4. Phys. Rev. Lett. 114, 126401–126405 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Anzai, H. et al. Abrupt change in hybridization gap at the valence transition of YbInCu4. Phys. Rev. Res. 2, 033408–033413 (2020).

    Article  CAS  Google Scholar 

  30. Cornelius, A. L. et al. Experimental studies of the phase transition in YbIn1–xAgxCu4. Phys. Rev. B 56, 7993–8000 (1997).

    Article  CAS  Google Scholar 

  31. Yang, Y. et al. Anomalous enhancement of the Nernst effect at the crossover between a Fermi liquid and a strange metal. Nat. Phys. 19, 379–385 (2023).

    Article  CAS  Google Scholar 

  32. Chen, Z. et al. Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping. Nat. Commun. 12, 3837 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, R., Chen, G., Ravi, K. A., Snyder, G. J. & Fleurial, J. P. Transient cooling of thermoelectric coolers and its applications for microdevices. Energy Convers. Manag. 46, 1407–1421 (2005).

    Article  Google Scholar 

  34. Snyder, G. J., Fleurial, J. P., Caillat, T., Yang, R. & Chen, G. Supercooling of Peltier cooler using a current pulse. J. Appl. Phys. 92, 1564–1569 (2002).

    Article  CAS  Google Scholar 

  35. Fischbach, E., Löffert, A., Ritter, F. & Assmus, W. Thermoanalytical investigations to understand the dependence between the growth method and crystal properties of valence changing ‘YbInCu4’. Cryst. Res. Technol. 33, 267–274 (1998).

    Article  CAS  Google Scholar 

  36. Löffert, A., Hautsch, S., Ritter, F. & Assmus, W. The phase diagram of YbInCu4. Phys. B 259, 134–135 (1999).

    Article  Google Scholar 

  37. Levy, M. & Sarachik, M. P. Measurement of the Hall coefficient using van der Pauw method without magnetic field reversal. Rev. Sci. Instrum. 60, 1342–1344 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z.C. and Y.P. express deep gratitude to the late J. He at Clemson University, South Carolina, USA, for constructive suggestions for this work. This work is supported by the National Natural Science Foundation of China (grant nos. T2125008 and 92163203 to Y.P., no. 92263108 to Z.C. and no. 52102292 to X.Z.), the Shanghai Rising-Star Program (grant no. 23QA1409300 to Z.C.) and the Innovation Program of Shanghai Municipal Education Commission (grant no. 2021-01-07-00-07-E00096 to Y.P.). We also thank J. Ma and H. Dong for their help on the susceptibility and X-ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and Y.P. conceived the idea and designed the project. Z.C. and X.Z. grew the crystals and performed the structural/composition characterization. Z.C. and S.Z. performed the transport property measurements, prepared the cooling devices and carried out the measurements of cooling performance. Z.C., J.L. and Y.P. analysed the experimental and modelling data. All authors reviewed the results and drafted the paper.

Corresponding author

Correspondence to Yanzhong Pei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jeffrey Snyder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Table 1, Figs. 1–10, Discussion and References.

Source data

Source Data Fig. 1

Temperature-normalized Thomson coefficient data (Fig. 1c) and relative temperature span data (Fig. 1d).

Source Data Fig. 2

Inverse magnetic susceptibility data (Fig. 2a), characteristic coupling temperature data (Fig. 2b) and electronic band dispersion data (Fig. 2c).

Source Data Fig. 3

Transport property data (Fig. 3a–f).

Source Data Fig. 4

Temperature profile data (Fig. 4a) and temperature span data (Fig. 4b,c).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhang, X., Zhang, S. et al. Demonstration of efficient Thomson cooler by electronic phase transition. Nat. Mater. 24, 34–38 (2025). https://doi.org/10.1038/s41563-024-02039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-02039-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing