Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs

Abstract

Contrary to current insulin formulations, endogenous insulin has direct access to the portal vein, regulating glucose metabolism in the liver with minimal hypoglycaemia. Here we report the synthesis of an amphiphilic diblock copolymer comprising a glucose-responsive positively charged segment and polycarboxybetaine. The mixing of this polymer with insulin facilitates the formation of worm-like micelles, achieving highly efficient absorption by the gastrointestinal tract and the creation of a glucose-responsive reservoir in the liver. Under hyperglycaemic conditions, the polymer triggers a rapid release of insulin, establishing a portal-to-peripheral insulin gradient—similarly to endogenous insulin—for the safe regulation of blood glucose. This insulin formulation exhibits a dose-dependent blood-glucose-regulating effect in a streptozotocin-induced mouse model of type 1 diabetes and controls the blood glucose at normoglycaemia for one day in non-obese diabetic mice. In addition, the formulation demonstrates a blood-glucose-lowering effect for one day in a pig model of type 1 diabetes without observable hypoglycaemia, showing promise for the safe and effective management of type 1 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Worm-like micelles for glucose-responsive oral insulin delivery.
Fig. 2: In vitro mucus penetration, cellular uptake and transcellular transportation of micelles/insulin.
Fig. 3: In vivo distribution of micelles/insulin in mice.
Fig. 4: In vivo treatment of micelles/insulin in diabetic mice.
Fig. 5: Postprandial BG regulation and isoglycaemic clamps in diabetic mice, and in vivo treatment of micelles/insulin in diabetic minipigs.
Fig. 6: Materials retention and histological testing.

Similar content being viewed by others

Data availability

The data that support the results of this study are available within the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Sun, H. et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183, 109119 (2022).

    Article  PubMed  Google Scholar 

  2. Katsarou, A. et al. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 3, 17016 (2017).

    Article  PubMed  Google Scholar 

  3. Mathieu, C., Martens, P. J. & Vangoitsenhoven, R. One hundred years of insulin therapy. Nat. Rev. Endocrinol. 17, 715–725 (2021).

    Article  PubMed  Google Scholar 

  4. Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geho, W. B. The importance of the liver in insulin replacement therapy in insulin-deficient diabetes. Diabetes 63, 1445–1447 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, T. D., Whitehead, K. A. & Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2020).

    Article  Google Scholar 

  7. Lee, J. S. et al. Metabolic and immunomodulatory control of type 1 diabetes via orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin. Nat. Biomed. Eng. 5, 983–997 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Veiseh, O., Tang, B. C., Whitehead, K. A., Anderson, D. G. & Langer, R. Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Article  Google Scholar 

  10. Bakh, N. A. et al. Glucose-responsive insulin by molecular and physical design. Nat. Chem. 9, 937–944 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, J. et al. Glucose-responsive insulin and delivery systems: innovation and translation. Adv. Mater. 32, 1902004 (2020).

    Article  CAS  Google Scholar 

  12. Mo, R., Jiang, T., Di, J., Tai, W. & Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 43, 3595–3629 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Z., Wang, J., Kahkoska, A. R., Buse, J. B. & Gu, Z. Developing insulin delivery devices with glucose responsiveness. Trends Pharmacol. Sci. 42, 31–44 (2021).

    Article  PubMed  Google Scholar 

  14. Gu, Z. et al. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7, 6758–6766 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Z. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Podual, K., Doyle, F. J. & Peppas, N. A. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J. Control. Release 67, 9–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Kitano, S., Koyama, Y., Kataoka, K., Okano, T. & Sakurai, Y. A novel drug delivery system utilizing a glucose responsive polymer complex between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. J. Control. Release 19, 161–170 (1992).

    Article  CAS  Google Scholar 

  18. Hisamitsu, I., Kataoka, K., Okano, T. & Sakurai, Y. Glucose-responsive gel from phenylborate polymer and poly (vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm. Res. 14, 289–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Matsumoto, A. et al. A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Int. Ed. 51, 2124–2128 (2012).

    Article  CAS  Google Scholar 

  20. Chou, D. H.-C. et al. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl Acad. Sci. USA 112, 2401–2406 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, J. et al. Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Sci. Adv. 5, eaaw4357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, J. et al. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 4, 499–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, J. et al. Injectable biodegradable polymeric complex for glucose-responsive insulin delivery. ACS Nano 15, 4294–4304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsumoto, A. et al. Synthetic ‘smart gel’ provides glucose-responsive insulin delivery in diabetic mice. Sci. Adv. 3, eaaq0723 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, J. et al. Week-long normoglycaemia in diabetic mice and minipigs via a subcutaneous dose of a glucose-responsive insulin complex. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01138-7 (2023).

  26. Brownlee, M. & Cerami, A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science 206, 1190–1191 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, J. et al. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc. Natl Acad. Sci. USA 116, 10744–10748 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yao, Y., Ji, K., Wang, Y., Gu, Z. & Wang, J. Materials and carriers development for glucose-responsive insulin. Acc. Mater. Res. 3, 960–970 (2022).

    Article  CAS  Google Scholar 

  29. Chu, J. N. & Traverso, G. Foundations of gastrointestinal-based drug delivery and future developments. Nat. Rev. Gastroenterol. Hepatol. 19, 219–238 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, T. et al. Ligand-switchable nanoparticles resembling viral surface for sequential drug delivery and improved oral insulin therapy. Nat. Commun. 13, 6649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xi, Z. et al. Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. J. Control. Release 342, 1–13 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, Y. et al. Recent advances in oral and transdermal protein delivery systems. Angew. Chem. Int. Ed. 62, e202214795 (2023).

    Article  CAS  Google Scholar 

  34. Baryakova, T. H., Pogostin, B. H., Langer, R. & McHugh, K. J. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 22, 387–409 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lamson, N. G., Berger, A., Fein, K. C. & Whitehead, K. A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 4, 84–96 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Lagarrigue, P., Moncalvo, F. & Cellesi, F. Non-spherical polymeric nanocarriers for therapeutics: the effect of shape on biological systems and drug delivery properties. Pharmaceutics 15, 32 (2023).

    Article  CAS  Google Scholar 

  37. Ji, K. et al. Material design for oral insulin delivery. Med X 1, 7 (2023).

    PubMed  PubMed Central  Google Scholar 

  38. Yu, J. et al. Glucose-responsive oral insulin delivery for postprandial glycemic regulation. Nano Res. 12, 1539–1545 (2019).

    Article  CAS  Google Scholar 

  39. Wang, A. et al. Liver-target and glucose-responsive polymersomes toward mimicking endogenous insulin secretion with improved hepatic glucose utilization. Adv. Funct. Mater. 30, 1910168 (2020).

    Article  CAS  Google Scholar 

  40. Xiao, Y. et al. Glucose-responsive oral insulin delivery platform for one treatment a day in diabetes. Matter 4, 3269–3285 (2021).

    Article  CAS  Google Scholar 

  41. Han, X. et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat. Nanotechnol. 15, 605–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, Y. et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2, 318–325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Banerjee, A., Qi, J., Gogoi, R., Wong, J. & Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 238, 176–185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao, W. et al. Highly sensitive colorimetric detection of a variety of analytes via the Tyndall effect. Anal. Chem. 91, 15114–15122 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Cone, R. A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61, 75–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci. Transl. Med. 5, 213ra167 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Acosta-Rodríguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male c57BL/6J mice. Science 376, 1192–1202 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yang, R. et al. A glucose-responsive insulin therapy protects animals against hypoglycemia. JCI Insight 3, e97476 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Qiu, Y. et al. Long-lasting designer insulin with glucose-dependent solubility markedly reduces risk of hypoglycemia. Adv. Ther. (Weinh.) 2, 1900128 (2019).

    CAS  Google Scholar 

  50. Ayala, J. E. et al. Hyperinsulinemic–euglycemic clamps in conscious, unrestrained mice. J. Vis. Exp. 16, e3188 (2011).

    Google Scholar 

  51. Cao, Z., Zhang, L. & Jiang, S. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir 28, 11625–11632 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Fan, W. et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery. Adv. Mater. 34, 2109189 (2022).

    Article  CAS  Google Scholar 

  53. Zou, J.-J. et al. Efficient oral insulin delivery enabled by transferrin-coated acid-resistant metal–organic framework nanoparticles. Sci. Adv. 8, eabm4677 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (2022YFE0202200, J.W.), JDRF (2-SRA-2021-1064-M-B, Z.G.; 2-SRA-2022-1159-M-B, J.W.), the Key Project of Science and Technology Commission of Zhejiang Province (2024C03083, Z.G.; 2024C03085, J.W.), Zhejiang University’s start-up packages and the Starry Night Science Fund at Shanghai institute for Advanced Study of Zhejiang University (SN-ZJU-SIAS-009, J.W.). A.R.K. is supported by the National Center for Advancing Translational Sciences, National Institutes of Health (KL2TR002490, J.W.). The project was supported by the Clinical and Translational Science Award program of the National Center for Advancing Translational Science, National Institutes of Health (UL1TR002489, J.W.). We appreciate the help from J. Pan and D. Wu of the Research and Service Center (College of Pharmaceutical Science, Zhejiang University) for technical support, G. Z. and Y. Zhang (Cryo-EM centre, Zhejiang University) for processing the samples for electron microscopy and D. Xu, M. Zhang, S. Xiong and D. Chen (Disease Simulation and Animal Model Platform of Liangzhu Laboratory) for taking care of the minipigs.

Author information

Authors and Affiliations

Authors

Contributions

Z.G., J.W., Y.S. and J.B.B. conceived and designed the study. K.J., Xiangqian Wei, J.Z., J.X., Xinwei Wei, Y.Z., W.L., Y.W., Y.Y., S.M. and Y.L. conducted experiments and obtained related data. X.H., S.W., Z.Z., J.Y., G.X. and Z.L. gave experimental operation and theoretical guidance of mice experiments. K.J., Xiangqian Wei, J.Z. and J.X. conducted minipigs experiments and provided theoretical support. Z.G., J.W., Y.S., K.J., J.Z., Xiangqian Wei, A.R.K., J.B.B. and J.X. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Jinqiang Wang or Zhen Gu.

Ethics declarations

Competing interests

Z.G. is the co-founder of Zenomics Inc., Zcapsule Inc. and μZen Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Kåre Birkeland and Nicholas Hunt for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 BG-regulating effects in diabetic minipigs.

BG of diabetic minipigs treated with the insulin capsules (oral), the PPF-ins capsules (oral) or Lantus (s.c.). The insulin dose of oral formulations was set to 4.2 U/kg. The Lantus dose was set to 0.3 U/kg.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–24.

Reporting Summary

Supplementary Data 1

Supplementary statistical source data.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Source Data Fig. 6

Statistical source data for Fig. 6.

Source Data Extended Data Fig. 1

Statistical source data for Extended Data Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, K., Wei, X., Kahkoska, A.R. et al. An orally administered glucose-responsive polymeric complex for high-efficiency and safe delivery of insulin in mice and pigs. Nat. Nanotechnol. 19, 1880–1891 (2024). https://doi.org/10.1038/s41565-024-01764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-024-01764-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing