Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures

Abstract

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles. Here we report ferroelectricity with concomitant Coulomb screening in different vdW heterostructures free of moiré interfaces containing monolayer graphene, boron nitride (BN) and transition metal chalcogenide layers. We observe a ferroelectric hysteretic response in a BN/monolayer graphene/BN, as well as in BN/WSe2/monolayer graphene/WSe2/BN heterostructure, but also when replacing the stacking fault-containing BN with multilayer twisted MoS2, a prototypical sliding ferroelectric. Our control experiments exclude alternative mechanisms, such that we conclude that ferroelectricity originates from stacking faults in the BN flakes. Hysteretic switching occurs when a conductive ferroelectric screens the gating field electrically and controls the monolayer graphene through its polarization field. Our results relax some of the material and design constraints for device applications based on sliding ferroelectricity and should enable memory device or the combination with diverse vdW materials with superconducting, topological or magnetic properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ferroelectricity in a monolayer graphene heterostructure.
Fig. 2: Ferroelectricity observed in multilayer twisted MoS2.
Fig. 3: Dynamics of polarization switching.
Fig. 4: Ladders of ferroelectricity.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information. Any other relevant data are available from the corresponding authors upon reasonable request.

References

  1. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    CAS  PubMed  Google Scholar 

  2. Zhang, D., Schoenherr, P., Sharma, P. & Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 8, 25–40 (2023).

    Google Scholar 

  3. Wang, C., You, L., Cobden, D. & Wang, J. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 22, 542–552 (2023).

    CAS  PubMed  Google Scholar 

  4. Klein, D. R. et al. Electrical switching of a bistable moiré superconductor. Nat. Nanotechnol. 18, 331–335 (2023).

    CAS  PubMed  Google Scholar 

  5. Jindal, A. et al. Coupled ferroelectricity and superconductivity in bilayer Td-MoTe2. Nature 613, 48–52 (2023).

    CAS  PubMed  Google Scholar 

  6. Kang, K. et al. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. 18, 861–866 (2023).

    CAS  PubMed  Google Scholar 

  7. Wu, Q., Kang, L., Wu, J. & Lin, Z. Large sliding regulation in van der Waals layered nonlinear optical ternary chalcogenides. npj Comput. Mater. 9, 1–10 (2023).

    Google Scholar 

  8. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    CAS  PubMed  Google Scholar 

  9. Vizner Stern, M. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    CAS  Google Scholar 

  10. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    CAS  Google Scholar 

  11. Woods, C. R. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 347 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

    PubMed  Google Scholar 

  13. Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390–395 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    CAS  PubMed  Google Scholar 

  15. Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    CAS  PubMed  Google Scholar 

  16. Ko, K. et al. Operando electron microscopy investigation of polar ___domain dynamics in twisted van der Waals homobilayers. Nat. Mater. 22, 992–998 (2023).

    CAS  PubMed  Google Scholar 

  17. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    CAS  PubMed  Google Scholar 

  18. Niu, R. et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nat. Commun. 13, 6241 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, Z. et al. Electronic ratchet effect in a moiré system: signatures of excitonic ferroelectricity. Preprint at https://doi.org/10.48550/arXiv.2306.03922 (2023).

  20. Yan, X. et al. Moiré synaptic transistor with room-temperature neuromorphic functionality. Nature 624, 551–556 (2023).

    CAS  PubMed  Google Scholar 

  21. Wang, Y. et al. Ferroelectricity in hBN intercalated double-layer graphene. Front. Phys. 17, 43504 (2022).

    Google Scholar 

  22. Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5, eaax5080 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. de la Barrera, S. C. et al. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat. Commun. 12, 5298 (2021).

    PubMed  PubMed Central  Google Scholar 

  24. Van Winkle, M. et al. Engineering interfacial polarization switching in van der Waals multilayers. Nat. Nanotechnol. 19, 751–757 (2024).

    PubMed  Google Scholar 

  25. Lv, M. et al. Spatially resolved polarization manipulation of ferroelectricity in twisted hBN. Adv. Mater. 34, 2203990 (2022).

    CAS  Google Scholar 

  26. Lv, M. et al. Multiresistance states in ferro- and antiferroelectric trilayer boron nitride. Nat. Commun. 15, 295 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Molino, L. et al. Ferroelectric switching at symmetry-broken interfaces by local control of dislocations networks. Adv. Mater. 35, 2207816 (2023).

    CAS  Google Scholar 

  28. Yang, T. H. et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nat. Electron. 7, 29–38 (2024).

    CAS  Google Scholar 

  29. Wang, Z.-J. et al. Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals. Nat. Mater. 23, 331–338 (2024).

    CAS  PubMed  Google Scholar 

  30. Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020).

    CAS  PubMed  Google Scholar 

  31. Castellanos-Gomez, A. et al. Van der Waals heterostructures. Nat. Rev. Methods Prim. 2, 1–19 (2022).

    Google Scholar 

  32. Martin, J. W. et al. Graphite rapidly forms via annihilation of screw dislocations. Carbon 215, 118386 (2023).

    CAS  Google Scholar 

  33. Ci, P. et al. Breaking rotational symmetry in supertwisted WS2 spirals via moiré magnification of intrinsic heterostrain. Nano Lett. 22, 9027–9035 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, H. J. et al. Double-spiral hexagonal boron nitride and shear strained coalescence boundary. Nano Lett. 19, 4229–4236 (2019).

    CAS  PubMed  Google Scholar 

  35. Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019).

    CAS  PubMed  Google Scholar 

  36. Tay, R. Y. et al. Concentric and spiral few-layer graphene: growth driven by interfacial nucleation vs screw dislocation. Chem. Mater. 30, 6858–6866 (2018).

    CAS  Google Scholar 

  37. Shearer, M. J. et al. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J. Am. Chem. Soc. 139, 3496–3504 (2017).

    CAS  PubMed  Google Scholar 

  38. Ly, T. H. et al. Vertically conductive MoS2 spiral pyramid. Adv. Mater. 28, 7723–7728 (2016).

    CAS  PubMed  Google Scholar 

  39. Sarma, P. V., Patil, P. D., Barman, P. K., Kini, R. N. & Shaijumon, M. M. Controllable growth of few-layer spiral WS2. RSC Adv. 6, 376–382 (2015).

    Google Scholar 

  40. Zhang, L. et al. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 14, 6418–6423 (2014).

    CAS  PubMed  Google Scholar 

  41. Chen, L. et al. Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe2 by sulfur-assisted chemical vapor deposition. ACS Nano 8, 11543–11551 (2014).

    CAS  PubMed  Google Scholar 

  42. Park, H. J. et al. One-dimensional hexagonal boron nitride conducting channel. Sci. Adv. 6, eaay4958 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, T. et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52, 1650–1671 (2023).

    CAS  PubMed  Google Scholar 

  44. Xu, X. et al. Growth of 2D materials at the wafer scale. Adv. Mater. 34, 2108258 (2022).

    CAS  Google Scholar 

  45. Zhang, L., Dong, J. & Ding, F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 121, 6321–6372 (2021).

    CAS  PubMed  Google Scholar 

  46. Wang, W. et al. Clean assembly of van der Waals heterostructures using silicon nitride membranes. Nat. Electron. 6, 981–990 (2023).

    CAS  Google Scholar 

  47. Li, H. et al. Constructing van der Waals heterostructures by dry-transfer assembly for novel optoelectronic device. Nanotechnology 33, 465601 (2022).

    CAS  Google Scholar 

  48. Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    CAS  PubMed  Google Scholar 

  49. Qi, J. et al. Stacking-controlled growth of rBN crystalline films with high nonlinear optical conversion efficiency up to 1%. Adv. Mater. 36, 2303122 (2024).

    CAS  Google Scholar 

  50. Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant numbers 2021YFA1400100 (J.L.) and 2019YFA0307800 (J.L., Z.V.H. and J.M.)), the NSF of China (grant numbers 12374168 (J.L.), 62275265 (C.H.), 12450003 (Z.V.H.), 92265203 (Z.V.H.), 52021001 (B.P.) and 12274090 (W.S.)), the Beijing Natural Science Foundation (grant number 4222084 (C.H.)) and the Natural Science Foundation of Shanghai (grant number 22ZR1406300 (W.S.)). Z.V.H. acknowledges the support of the Fund for Shanxi “1331 Project” Key Subjects Construction, and the support of the Innovation Program for Quantum Science and Technology (grant no. 2021ZD0302003). This research was also supported by the CAS Project for Young Scientists in Basic Research (YSBR-003 (W.Z.)). This research benefited from resources and supports from the Electron Microscopy Center at the University of Chinese Academy of Sciences (W.Z.). We also acknowledge the support from Peking Nanofab (J.L.).

Author information

Authors and Affiliations

Authors

Contributions

J.L., Z.V.H. and C.H. conceived the project. R.N., Z.L., X.H. and Z.Q. fabricated devices and performed transport measurements with assistance from Z.W. and C.H.; crystallographic characterization was performed by R.N., Z.L. and Q.L., assisted by K.L. and J.M.; TEM characterization of electrical transport devices and identification of microstructures in boron nitride were carried out by C.W., supervised by W.Z.; TEM characterization of capacitance devices was done by C.Y. and Y.W., supervised by R.C. and B.P.; AFM characterization was performed by M.L., supervised by J.X.; theoretical calculation was done by M.W.; K.W. and T.T. synthesized boron nitride crystals; J.L., Z.V.H., C.H. and Z.G. supervised the project. All authors contributed to the data analysis. R.N., Z.V.H., C.H. and J.L. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Chunrui Han, Bo Peng, Zheng Vitto Han or Jianming Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Sections 1–12, including Supplementary Figs. 1–20, discussion and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, R., Li, Z., Han, X. et al. Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures. Nat. Nanotechnol. 20, 346–352 (2025). https://doi.org/10.1038/s41565-024-01846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-024-01846-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing