Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric photooxidation of glycerol to hydroxypyruvic acid over Rb–Ir catalytic pairs on poly(heptazine imides)

Subjects

Abstract

Selective asymmetric oxidation of glycerol (GLY) to hydroxypyruvic acid (HPA) offers an attractive approach for chiral drug synthesis, but this process is highly challenging. Here we develop a photocatalytic method to achieve heterogeneous selective photooxidation of GLY to HPA over rubidium (Rb) and iridium (Ir) catalytic pairs decorated on a poly(heptazine imide) framework. The Rb sites effectively adsorb GLY molecules through the terminal –OH groups, thus inhibiting their oxidation during photoreaction, while the Ir sites enhance the oxygen reduction reaction and the in situ generated surficial oxygen-reduction radicals on Ir can protect the reactive C-centred radical intermediates produced during photooxidation. The spatial arrangement of Rb and Ir sites facilitates hydrogen extraction—an essential rate-determining step for GLY photooxidation—and protects C3 radical intermediates from overoxidation. This photocatalytic system achieves a remarkable productivity for HPA synthesis (~8,000 μmol of HPA per gram of photocatalyst per hour) under visible-light illumination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photooxidation of GLY for HPA synthesis.
Fig. 2: Structural characterization of IrRb-PHI.
Fig. 3: Photoexcitation and quenching properties.
Fig. 4: Reaction mechanism for oxidizing GLY to GLA.
Fig. 5: Pathway for HPA production.

Similar content being viewed by others

Data availability

All source data for figures in the Article, extended data and Supplementary Information will be uploaded to the Nature publication system. The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. OECD–FAO Agricultural Outlook 2020–2029 (OECD, 2020).

  2. Werpy, T. A., Holladay, J. E. & White, J. F. Top Value Added Chemicals From Biomass: Results of Screening for Potential Candidates from Sugars and Synthesis Gas (US Department of Energy, 2004).

  3. Dodekatos, G., Schünemann, S. & Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 8, 6301–6333 (2018).

    Article  CAS  Google Scholar 

  4. Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., & Della Pina, C. From glycerol to value-added products. Angew. Chem. Int. Ed. 46, 4434–4440 (2007).

    Article  CAS  Google Scholar 

  5. Dias da Silva Ruy, A. et al. Market prospecting and assessment of the economic potential of glycerol from biodiesel. In Biotechnological Applications of Biomass (eds Basso, T. P. et al.) Ch. 11 (IntechOpen, 2020).

  6. Katryniok, B. et al. Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chem. 13, 1960–1979 (2011).

    Article  CAS  Google Scholar 

  7. Sheng, H. et al. Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nat. Catal. 5, 716–725 (2022).

    Article  CAS  Google Scholar 

  8. Kobori, Y., Myles, D. C. & Whitesides, G. M. Substrate specificity and carbohydrate synthesis using transketolase. J. Org. Chem. 57, 5899–5907 (1992).

    Article  CAS  Google Scholar 

  9. Liu, Z., Xiao, C., Lin, S., Tittmann, K. & Dai, S. Multifaceted role of the substrate phosphate group in transketolase catalysis. ACS Catal. 14, 355–365 (2024).

    Article  CAS  Google Scholar 

  10. Horecker, B. L., Hurwitz, J. & Smyrniotis, P. Z. Xylulose 5-phosphate and the formation of sedoheptulose 7-phosphate with liver transketolase. J. Am. Chem. Soc. 78, 692–694 (1956).

    Article  CAS  Google Scholar 

  11. Munos, J. W., Pu, X., Mansoorabadi, S. O., Kim, H. J. & Liu, H.-W. A secondary kinetic isotope effect study of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase-catalyzed reaction: evidence for a retroaldol–aldol rearrangement. J. Am. Chem. Soc. 131, 2048–2049 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shaeri, J., Wohlgemuth, R. & Woodley, J. M. Semiquantitative process screening for the biocatalytic synthesis of d-xylulose-5-phosphate. Org. Process Res. Dev. 10, 605–610 (2006).

    Article  CAS  Google Scholar 

  13. Cai, G. et al. Thermodynamic investigation of inhibitor binding to 1-deoxy-d-xylulose-5-phosphate reductoisomerase. ACS Med. Chem. Lett. 3, 496–500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar, M., Meena, B., Yu, A., Sun, C. & Challapalli, S. Advancements in catalysts for glycerol oxidation via photo-/electrocatalysis: a comprehensive review of recent developments. Green Chem. 25, 8411–8443 (2023).

    Article  CAS  Google Scholar 

  15. Xiao, Y. et al. Selective photoelectrochemical oxidation of glycerol to glyceric acid on (002) facets exposed WO3 nanosheets. Angew. Chem. Int. Ed. 63, e202319685 (2024).

    Article  CAS  Google Scholar 

  16. Liu, D. et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 10, 1779 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).

    Article  CAS  Google Scholar 

  18. Teng, Z. et al. Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical production. Nat. Chem. 16, 1250–1260 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Savateev, A., Pronkin, S., Willinger, M. G., Antonietti, M. & Dontsova, D. Towards organic zeolites and inclusion catalysts: Heptazine imide salts can exchange metal cations in the solid state. Chem. Asian J. 12, 1517–1522 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Wirnhier, E. et al. Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1−x)3LiCl]: a crystalline 2D carbon nitride network. Chem. Eur. J. 17, 3213–3221 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Schlomberg, H. et al. Structural Insights into poly(heptazine imides): a light-storing carbon nitride material for dark photocatalysis. Chem. Mater. 31, 7478–7486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, J. H. et al. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. J. Mater. Chem. A 2, 9490–9495 (2014).

    Article  CAS  Google Scholar 

  23. Zhang, J.-R. et al. Accurate K-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations. Phys. Chem. Chem. Phys. 21, 22819–22830 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, W. et al. Potassium-Ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 58, 16644–16650 (2019).

    Article  CAS  Google Scholar 

  25. Kessler, F. K. et al. Functional carbon nitride materials—design strategies for electrochemical devices. Nat. Rev. Mater. 2, 17030 (2017).

    Article  CAS  Google Scholar 

  26. Lin, L., Yu, Z. & Wang, X. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. 58, 6164–6175 (2019).

    Article  CAS  Google Scholar 

  27. Lin, L. et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 3, 649–655 (2020).

    Article  CAS  Google Scholar 

  28. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  29. Bredas, J.-L. Mind the gap! Mater. Horiz. 1, 17–19 (2014).

    Article  CAS  Google Scholar 

  30. Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article  PubMed  Google Scholar 

  31. Wang, C., Wang, Z., Mao, S., Chen, Z. & Wang, Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. Chin. J. Catal. 43, 928–955 (2022).

    Article  CAS  Google Scholar 

  32. Wang, H., Cui, Y., Shi, J., Tao, X. & Zhu, G. Porous carbon supported Lewis acid–base sites as metal-free catalysts for the carbonylation of glycerol with urea. Appl. Catal. B 330, 122457 (2023).

    Article  CAS  Google Scholar 

  33. An, Z. et al. Pt1 enhanced C–H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat. Commun. 13, 5467 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo, L. et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 144, 7720–7730 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Mörsdorf, J.-M. & Ballmann, J. Coordination-induced radical generation: selective hydrogen atom abstraction via controlled Ti–C σ-bond homolysis. J. Am. Chem. Soc. 145, 23452–23460 (2023).

    Article  PubMed  Google Scholar 

  36. Bellotti, P., Huang, H. M., Faber, T. & Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 123, 4237–4352 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, X. et al. Fast modulation of d-band holes quantity in the early reaction stages for boosting acidic oxygen evolution. Angew. Chem. Int. Ed. 62, e202308082 (2023).

    Article  CAS  Google Scholar 

  38. Hao, Y. et al. Electrode/electrolyte synergy for concerted promotion of electron and proton transfers toward efficient neutral water oxidation. Angew. Chem. Int. Ed. 62, e202303200 (2023).

    Article  CAS  Google Scholar 

  39. Dai, X. et al. Aerobic oxidative synthesis of formamides from amines and bioderived formyl surrogates. Angew. Chem. Int. Ed. 63, e202402241 (2024).

    Article  CAS  Google Scholar 

  40. Zhang, L., Ma, L., Yuan, J., Zhang, X.-M. & Tang, Z. Tuning band structures of Hf-PCN-224(M) for β-carbonyl C(sp3)-H bond activation and difunctionalization: tandem C(sp3) radical cross-coupling through photoredox. Appl. Catal. B 321, 122049 (2023).

    Article  CAS  Google Scholar 

  41. Teng, Z. et al. Atomically isolated Sb(CN)3 on sp2-c-COFs with balanced hydrophilic and oleophilic sites for photocatalytic C–H activation. Sci. Adv. 10, eadl5432 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang, C. R., Yang, X. F., Long, B. & Li, J. A water-promoted mechanism of alcohol oxidation on a Au(111) surface: understanding the catalytic behavior of bulk gold. ACS Catal. 3, 1693–1699 (2013).

    Article  CAS  Google Scholar 

  43. Huang, X., Guo, Y., Zou, Y. & Jiang, J. Electrochemical oxidation of glycerol to hydroxypyruvic acid on cobalt(oxy) hydroxide by high-valent cobalt redox centers. Appl. Catal. B 309, 121247 (2022).

    Article  CAS  Google Scholar 

  44. Kim, H. J., Lee, J., Green, S. K., Huber, G. W. & Kim, W. B. Selective glycerol oxidation by electrocatalytic dehydrogenation. ChemSusChem 7, 1051–1056 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Jedsukontorn, T., Ueno, T., Saito, N. & Hunsom, M. Narrowing band gap energy of defective black TiO2 fabricated by solution plasma process and its photocatalytic activity on glycerol transformation. J. Alloys Compd. 757, 188–199 (2018).

    Article  CAS  Google Scholar 

  46. Choi, Y.-B., Nunotani, N., Morita, K. & Imanaka, N. Production of hydroxypyruvic acid by glycerol oxidation over Pt/CeO2-ZrO2-Bi2O3-PbO/SBA-16 catalysts. Catalysts 12, 69 (2022).

    Article  CAS  Google Scholar 

  47. Jedsukontorn, T., Saito, N. & Hunsom, M. Photocatalytic behavior of metal-decorated TiO2 and their catalytic activity for transformation of glycerol to value added compounds. Mol. Catal. 432, 160–171 (2017).

    Article  CAS  Google Scholar 

  48. Sun, Y. et al. PtBi intermetallic compounds with enhanced stability towards base-free selective oxidation of glycerol. Ind. Eng. Chem. Res. 62, 17503–17512 (2023).

    Article  Google Scholar 

  49. Dou, J. et al. Carbon supported Pt9Sn1 nanoparticles as an efficient nanocatalyst for glycerol oxidation. Appl. Catal. B 180, 78–85 (2016).

    Article  CAS  Google Scholar 

  50. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, Q. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 12, 483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Lu, Y. et al. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO4 photoanodes. Nat. Commun. 15, 5475 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the City University of Hong Kong startup fund (grant no. 9020003), ITF–RTH – Global STEM Professorship (grant no. 9446006), JC STEM lab of Advanced CO2 Upcycling (grant no. 9228005), National Natural Science Foundation of China (grant nos. 11904235, 22125604, 22372102 and 22436003), the National Key Research and Development Program of China (grant no. 2021YFA1600800), Educational Commission of Guangdong Province (grant no. 839-0000013131), Shenzhen Science and Technology Program (grant no. RCJC20200714114434086), Guangdong Basic and Applied Basic Research Foundation (grant no. 2024A1515010976), Shenzhen Peacock Plan (grant no. 20210802524B) and Research Team Cultivation Program of Shenzhen University (grant no. 2023QNT013). We also thank C. Chen (King Abdullah University of Science and Technology) and Y. Han (King Abdullah University of Science and Technology).

Author information

Authors and Affiliations

Authors

Contributions

Z.T. and B.L. conceptualized the project. D.Z., J.L., C.S. and B.L. supervised the project. Z.T. and Z.Z. synthesized the catalysts, conducted the catalytic tests and the related data processing, and performed materials characterization and analysis with help from Y.T., L.Y., L.H., C.W., Q.Z., O.T., H.Y., J.X. and J.D. Z.T. and Z.Z. performed the theoretical study. N.J. performed the microscopy measurement. Z.T. and B.L. wrote the manuscript with support from all authors.

Corresponding authors

Correspondence to Dengsong Zhang, Jianmei Lu, Chenliang Su or Bin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Zaizhu Lou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 X-ray diffraction patterns of the as-prepared Rb-PHI and Ir0.5Rb-PHI.

a, Structural model of Rb-PHI along the zone axis of [001]. b, Structural model of Rb-PHI along the zone axis of [010]. c, XRD pattern of the as-prepared Rb-PHI. d, XRD pattern of the as-prepared Ir0.5Rb-PHI.

Source data

Extended Data Fig. 2 Influence of Ir and Rb species on chemical states of C and N.

a-b, Normalized carbon (a) and nitrogen (b) K-edge XANES spectra for PHI, Rb-PHI and Ir0.5Rb-PHI.

Source data

Extended Data Fig. 3 Extended X-ray absorption fine structure (EXAFS) spectra of Rb-PHI, Ir0.5-PHI and Ir0.5Rb-PHI.

a, Fourier transform extended X-ray absorption fine structure (FT-EXAFS) spectra of Rb-OH, Rb-PHI, Ir0.5Rb-PHI and RbCl. b, k3-weighted k-space spectrum of Rb for Ir0.5Rb-PHI. c, Fourier transform extended X-ray absorption fine structure (FT-EXAFS) spectra of IrO2, Ir0.5-PHI, Ir0.5Rb-PHI and Ir foil. d, k3-weighted k-space spectrum of Ir for Ir0.5Rb-PHI.

Source data

Extended Data Fig. 4 Surface chemical states of C, N, Rb and Ir in Rb-PHI, Ir0.5-PHI and Ir0.5Rb-PHI.

a-c, High-resolution XPS spectra of N 1 s (a), C 1 s (b) and Rb 3 d (c) for Rb-PHI and Ir0.5Rb-PHI. d, High-resolution XPS spectra of Ir 4 f for Ir0.5-PHI and Ir0.5Rb-PHI. The almost no shift in the Rb 3 d XPS spectrum is attributed to the notably large content of Rb (~7% wt.%) species in Ir0.5Rb-PHI, which cannot be remarkably affected by the Ir species with a low concentration (~0.5 wt.%). On the other hand, the shift of the Ir 4 f XPS spectrum is notable for Ir0.5Rb-PHI as compared to that for Ir0.5-PHI.

Source data

Extended Data Fig. 5 Post-structural characterization of Ir0.5Rb-PHI.

a, The Ir and Rb contents before and after the photoreaction. b, TEM image of Ir0.5Rb-PHI after 30 h of photoreaction. c, High-resolution image of b. d, HAADF-STEM image of Ir0.5Rb-PHI after the 30 h of photoreaction. e, HAADF-STEM image of Ir0.5Rb-PHI before photoreaction and the corresponding EDX mappings. f, HAADF-STEM image of Ir0.5Rb-PHI after 30 h of photoreaction and the corresponding EDX mappings. g-h, High-resolution Rb 3 d (g) and Ir 4 f (h) XPS spectra for Ir0.5Rb-PHI after 30 h of photoreaction.

Source data

Extended Data Fig. 6 Density of states.

a-b, Total density of states (TDOS), partial density of states (PDOS) and overlapped density of states (ODOS) for a, Rb incorporated hexagonal heptazine imide (Rb-HHI) and b, Ir and Rb co-incorporated hexagonal heptazine imide (IrRb-HHI).

Source data

Extended Data Fig. 7 Adsorption of HPA, GLD and GLA on Rb-PHI and IrRb-PHI.

a, Adsorption energy of GLY-end-on (GLY-T), GLA, GLY-side-on (GLY-S) and GLD on Rb-PHI. b, Adsorption energy of GLY-T, GLA, GLY-S and GLD on IrRb-PHI. GLY-T refers to the adsorption configuration of attaching the terminal-OH of GLY to Rb site on Rb-PHI and IrRb-PHI. GLY-S refers to the adsorption configuration of attaching the secondary-OH of GLY to Rb site on Rb-PHI and IrRb-PHI. GLA refers to the adsorption configuration of attaching the terminal-OH of GLA to Rb site on Rb-PHI and IrRb-PHI. HPA refers to the adsorption configuration of attaching the terminal -OH groups of HPA to Rb site on Rb-PHI and IrRb-PHI.

Source data

Extended Data Fig. 8 Exploration of oxygen reduction intermediates.

Raman spectra recorded over Rb-PHI in O2 saturated GLY aqueous solution (0.1 M) during photoreaction for 0, 5, 10, 15 and 20 min from bottom to top.

Source data

Extended Data Fig. 9 Photooxidation of GLY for selective HPA synthesis under various O2 pressure.

a, Production rate under the reaction condition of 0.2 M GLY, 298 K, 2 atm O2 (left) and 1 atm O2 (right). c, Production rate under the reaction condition of 0.5 M GLY, 298 K, 5 atm O2 (left) and 1 atm O2 (right). e, Production rate under the reaction condition of 0.1 M GLY, 298 K, 5 atm O2 (left) and 1 atm O2 (right). b, d, f, HPA selectivity and GLY conversion under the reaction condition of 0.2 M GLY at 298 K in 2 atm O2 (left) and 1 atm O2 (right) (b), 0.5 M GLY at 298 K in 5 atm O2 (left) and 1 atm O2 (right) (d) and 0.1 M GLY at 298 K in 5 atm O2 (left) and 1 atm O2 (right) (f).

Source data

Extended Data Fig. 10 Partial density of states for various oxidation intermediates.

a-b, PDOS of CH2OH-·COH-COOH on Rb-PHI (a) and IrRb-PHI (b). c-d, PDOS of CH2OH-CHO on Rb-PHI (c) and IrRb-PHI (d).

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–64, Tables 1–14 and Notes 1–12.

Supplementary Data 1

Source data of supplementary figures.

Source data

Source Data Fig. 1

Source data of Fig. 1.

Source Data Fig. 2

Source data of Fig. 2.

Source Data Fig. 3

Source data of Fig. 3.

Source Data Fig. 4

Source data of Fig. 4.

Source Data Fig. 5

Source data of Fig. 5.

Source Data Extended Data Fig. 1

Source data of Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Source data of Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Source data of Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Source data of Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Source data of Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Source data of Extended Data Fig. 6.

Source Data Extended Data Fig. 7

Source data of Extended Data Fig. 7.

Source Data Extended Data Fig. 8

Source data of Extended Data Fig. 8.

Source Data Extended Data Fig. 9

Source data of Extended Data Fig. 9.

Source Data Extended Data Fig. 10

Source data of Extended Data Fig. 10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Z., Zhang, Z., Tu, Y. et al. Asymmetric photooxidation of glycerol to hydroxypyruvic acid over Rb–Ir catalytic pairs on poly(heptazine imides). Nat. Nanotechnol. 20, 815–824 (2025). https://doi.org/10.1038/s41565-025-01897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-025-01897-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing