Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovering nanoparticle corona ligands for liver macrophage capture

Abstract

Liver macrophages capture circulating nanoparticles and reduce their delivery to target organs. Serum proteins adsorb to the nanoparticle surface after administration. However, the adsorbed serum proteins and their cognate cell receptors for removing nanoparticles from the bloodstream have not been linked. Here we use a multi-omics strategy to identify the adsorbed serum proteins binding to specific liver macrophage receptors. We discovered six absorbed serum proteins that bind to two liver macrophage receptors. Nanoparticle physicochemical properties can affect the degree of the six serum proteins adsorbing to the surface, the probability of binding to cell receptors and whether the liver removes the nanoparticle from circulation. Identifying the six adsorbed proteins allowed us to engineer decoy nanoparticles that prime the liver to take up fewer therapeutic nanoparticles, enabling more nanoparticles for targeting extrahepatic tissues. Elucidating the molecular interactions governing the nanoparticle journey in vivo will enable us to control nanoparticle delivery to diseased tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Framework for screening cells for receptor-RACL matches.
Fig. 2: Genome screening to identify macrophage receptors that bind nanoparticles.
Fig. 3: Identification of RACLs.
Fig. 4: Nanoparticle size and surface chemistry affect RACL formation.
Fig. 5: RACLs are present in diverse nanoparticle designs.
Fig. 6: Decoy and target nanoparticles can have different chemical compositions.

Similar content being viewed by others

Data availability

The main paper and the Supplementary Information contain all data supporting the findings of this study. The raw data are available from the corresponding author upon reasonable request. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD061236. Genomics sequencing data have been deposited to the NCBI SRA genomics databases with the accession number PRJNA1228635.

References

  1. Zhang, Y.-N., Poon, W., Tavares, A. J., McGilvray, I. D. & Chan, W. C. W. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Ngo, W. et al. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv. Drug Deliv. Rev. 185, 114238 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, G. et al. High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties. ACS Nano 8, 12437–12449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagayama, S. et al. Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int. J. Pharm. 329, 192–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Binnemars-Postma, K. A., Ten Hoopen, H. W., Storm, G. & Prakash, J. Differential uptake of nanoparticles by human M1 and M2 polarized macrophages: protein corona as a critical determinant. Nanomedicine 11, 2889–2902 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Montizaan, D. et al. Genome-wide forward genetic screening to identify receptors and proteins mediating nanoparticle uptake and intracellular processing. Nat. Nanotechnol. 19, 1022–1031 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Lin, Z. P., Ngo, W., Mladjenovic, S. M., Wu, J. L. Y. & Chan, W. C. W. Nanoparticles bind to endothelial cells in injured blood vessels via a transient protein corona. Nano Lett. 23, 1003–1009 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01093-5 (2022).

    Article  PubMed  Google Scholar 

  9. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Walkey, C. D. et al. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8, 2439–2455 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Capriotti, A. L. et al. Differential analysis of ‘protein corona’ profile adsorbed onto different nonviral gene delivery systems. Anal. Biochem. 419, 180–189 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Toth, C. A. & Thomas, D. P. Liver endocytosis and Kupffer cells. Hepatology 16, 255–266 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Gref, R. et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B 18, 301–313 (2000).

    Article  CAS  Google Scholar 

  14. Tavares, A. J. et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc. Natl Acad. Sci. USA 114, E10871–E10880 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. von Mering, C. et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258–261 (2003).

    Article  Google Scholar 

  16. Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Uhlén, M. et al. The human secretome. Sci. Signal. 12, eaaz0274 (2019).

    Article  PubMed  Google Scholar 

  18. Hart, T. et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 7, 2719–2727 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, T. et al. Optimization of differentiation and transcriptomic profile of THP-1 cells into macrophage by PMA. PLoS ONE 18, e0286056 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. MacParland, S. A. et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chanput, W., Mes, J. J. & Wichers, H. J. THP-1 cell line: an in vitro cell model for immune modulation approach. Int. Immunopharmacol. 23, 37–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Starr, T., Bauler, T. J., Malik-Kale, P. & Steele-Mortimer, O. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS ONE 13, e0193601 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Auwerx, J., Staels, B., Van Vaeck, F. & Ceuppens, J. L. Changes in IgG Fc receptor expression induced by phorbol 12-myristate 13-acetate treatment of THP-1 monocytic leukemia cells. Leuk. Res. 16, 317–327 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. de Boer, C. G., Ray, J. P., Hacohen, N. & Regev, A. MAUDE: inferring expression changes in sorting-based CRISPR screens. Genome Biol. 21, 134 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Colic, M. et al. Identifying chemogenetic interactions from CRISPR screens with DrugZ. Genome Med. 11, 52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Matsumoto, A. et al. Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions. Proc. Natl Acad. Sci. USA 87, 9133–9137 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Platt, N. & Gordon, S. Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chem. Biol. 5, R193–R203 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Hezareh, M., Hessell, A. J., Jensen, R. C., van de Winkel, J. G. & Parren, P. W. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J. Virol. 75, 12161–12168 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grage-Griebenow, E. et al. Human MO subsets as defined by expression of CD64 and CD16 differ in phagocytic activity and generation of oxygen intermediates. Immunobiology 202, 42–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Bulut, Y. et al. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 280, 20961–20967 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Estruch, M. et al. CD14 and TLR4 mediate cytokine release promoted by electronegative LDL in monocytes. Atherosclerosis 229, 356–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Mukhopadhyay, S. et al. SR-A/MARCO-mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. Blood 117, 1319–1328 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Onyishi, C. U. et al. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen. Nat. Commun. 14, 4895 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas, P. D. et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Mi, H., Muruganujan, A. & Thomas, P. D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 41, D377–D386 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Bowdish, D. M. E. et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog. 5, e1000474 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brown, M. S., Basu, S. K., Falck, J. R., Ho, Y. K. & Goldstein, J. L. The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J. Supramol. Struct. 13, 67–81 (1980).

    Article  CAS  PubMed  Google Scholar 

  41. Stringer, B., Imrich, A. & Kobzik, L. Lung epithelial cell (A549) interaction with unopsonized environmental particulates: quantitation of particle-specific binding and IL-8 production. Exp. Lung Res. 22, 495–508 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Means, N., Elechalawar, C. K., Chen, W. R., Bhattacharya, R. & Mukherjee, P. Revealing macropinocytosis using nanoparticles. Mol. Asp. Med. 83, 100993 (2022).

    Article  Google Scholar 

  43. Harush-Frenkel, O., Debotton, N., Benita, S. & Altschuler, Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 353, 26–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Z., Tiruppathi, C., Minshall, R. D. & Malik, A. B. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3, 4110–4116 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wolfram, J. et al. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci. Rep. 7, 13738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Manzanares, D. & Ceña, V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 12, 371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sousa de Almeida, M. et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 50, 5397–5434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, S., Gao, H. & Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 9, 8655–8671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vácha, R., Martinez-Veracoechea, F. J. & Frenkel, D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 11, 5391–5395 (2011).

    Article  PubMed  Google Scholar 

  51. Morita, S.-Y., Deharu, Y., Takata, E., Nakano, M. & Handa, T. Cytotoxicity of lipid-free apolipoprotein B. Biochim. Biophys. Acta 1778, 2594–2603 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Ricklin, D. Manipulating the mediator: modulation of the alternative complement pathway C3 convertase in health, disease and therapy. Immunobiology 217, 1057–1066 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Forneris, F. et al. Regulators of complement activity mediate inhibitory mechanisms through a common C3b-binding mode. EMBO J. 35, 1133–1149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tavano, R. et al. C1q-mediated complement activation and C3 opsonization trigger recognition of stealth poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes. ACS Nano 12, 5834–5847 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Inturi, S. et al. Modulatory role of surface coating of superparamagnetic iron oxide nanoworms in complement opsonization and leukocyte uptake. ACS Nano 9, 10758–10768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B. & McNeil, S. E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 5, 487–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, J. et al. Structure of complement fragment C3b–factor H and implications for host protection by complement regulators. Nat. Immunol. 10, 728–733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schöttler, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    Article  PubMed  Google Scholar 

  59. Cheng, C. et al. Recognition of lipoproteins by scavenger receptor class A members. J. Biol. Chem. 297, 100948 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Petithory, T. et al. Size-dependent internalization efficiency of macrophages from adsorbed nanoparticle-based monolayers. Nanomaterials 11, 1963 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perry, J. L. et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12, 5304–5310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Capriotti, A. L. et al. Do plasma proteins distinguish between liposomes of varying charge density? J. Proteom. 75, 1924–1932 (2012).

    Article  CAS  Google Scholar 

  63. Caracciolo, G., Pozzi, D., Capriotti, A. L., Cavaliere, C. & Laganà, A. Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles. J. Nanopart. Res. 15, 1498 (2013).

    Article  Google Scholar 

  64. Pozzi, D. et al. Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 6, 2782–2792 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Caracciolo, G. et al. The liposome–protein corona in mice and humans and its implications for in vivo delivery. J. Mater. Chem. B 2, 7419–7428 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. O’Connell, D. J. et al. Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials. Nanoscale 7, 15268–15276 (2015).

    Article  PubMed  Google Scholar 

  67. Caracciolo, G. et al. Lipid composition: a ‘key factor’ for the rational manipulation of the liposome–protein corona by liposome design. RSC Adv. 5, 5967–5975 (2015).

    Article  CAS  Google Scholar 

  68. Huang, H. et al. An evaluation of blood compatibility of silver nanoparticles. Sci. Rep. 6, 25518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pisani, C. et al. Experimental separation steps influence the protein content of corona around mesoporous silica nanoparticles. Nanoscale 9, 5769–5772 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Arcella, A. et al. Brain targeting by liposome-biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells. ACS Chem. Neurosci. 9, 3166–3174 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Lai, W. et al. A protein corona adsorbed to a bacterial magnetosome affects its cellular uptake. Int. J. Nanomed. 15, 1481–1498 (2020).

    Article  CAS  Google Scholar 

  72. Nierenberg, D. et al. Macromolecules absorbed from influenza infection-based sera modulate the cellular uptake of polymeric nanoparticles. Biomimetics 7, 219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baimanov, D. et al. Stereoselective coronas regulate the fate of chiral gold nanoparticles in vivo. Nanoscale Horiz. 8, 859–869 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Ashkarran, A. A. et al. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities. Nat. Commun. 13, 6610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ouyang, B. et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 19, 1362–1371 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Aldridge, W. N. Serum esterases. II. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem. J. 53, 117–124 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramirez Reyes, J. M. J., Cuesta, R. & Pause, A. Folliculin: a regulator of transcription through AMPK and mTOR signaling pathways. Front. Cell Dev. Biol. 9, 667311 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institute of Health Research (FDN159932 and MOP-1301431), the NanoMedicines Innovation Network (2019-T3-01) and the Canadian Research Chairs Program (950-223824). We thank NSERC (J.L.Y.W. and Z.S.), the Ontario Graduate Scholarship (B.B., M.G.G.M. and Z.S.), Lorne F. Lambier, Q.C. Scholarship (Z.S.), the Cecil Yip Award (B.B., J.L.Y.W., Z.S. and A.G.F.), the Jennifer Dorrington Award (J.L.Y.W.), the Vanier Award (S.A.), the MAX Scholarship Fund (S.A.), the Adel S. Sedra graduate award (S.A.), the MD/PhD programme (S.A.) and the Barbara and Frank Milligan family (J.L.Y.W. and Z.S.) for student fellowships and scholarships. B.S. acknowledges the Doctoral Completion Award and NSERC CREATE grant for funding support. We would like to thank S. Mladjenovic for his assistance in imaging cells. In addition, we would like to thank SPARC BioCentre for help with protein identification, the Nanomedicine Fabrication Centre for ICP-MS, the Centre for Phenogenomics for histology and the Temerty Faculty of Medicine and SickKids Flow Cytometry Facilities for flow cytometry and cell sorting.

Author information

Authors and Affiliations

Authors

Contributions

B.B., W.N., J.M. and W.C.W.C. conceptualized the project. W.N., J.L.Y.W. and A.G.F. did a genome-wide CRISPR screen. B.B., W.N. and W.C.W.C. analysed the data. B.B. completed the inhibition experiments. B.B. and Z.P.L. completed the histology experiments. S.A. collected electron micrographs. B.B. did the protein corona identification and STRING analysis. B.B. and M.G.G.M. did the competition experiments. B.B. completed the meta-analysis. Z.S. and B.S. synthesized the liposomes. B.B. labelled and coated the nanoparticles. B.B. evaluated the decoys in vitro. B.B., Z.P.L. and M.G.G.M. evaluated the decoys in vivo. B.B. and W.C.W.C. wrote the paper. All authors participated in editing and revising the paper.

Corresponding author

Correspondence to Warren C. W. Chan.

Ethics declarations

Competing interests

W.C.W.C. consults for Metis Therapeutics, Merck, Moderna, Foresight Ventures, Luna Nanotech and Cystic Fibrosis Foundation. The other authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1 and 2.

Reporting Summary

Supplementary Table 3

Raw data for complex tables including mass spectrometry and meta-analysis data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussin, B., MacDuff, M.G.G., Ngo, W. et al. Discovering nanoparticle corona ligands for liver macrophage capture. Nat. Nanotechnol. (2025). https://doi.org/10.1038/s41565-025-01903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-025-01903-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research