Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanochemical carbon dioxide capture and conversion

Abstract

Developing a direct carbon dioxide (CO2) capture and methanation method is one of the most important challenges to achieving carbon neutrality. However, converting CO2 into methane (CH4) kinetically requires the activation of stable CO2 at high temperatures (300–500 °C), while the CO2-to-CH4 conversion thermodynamically favours low temperatures. Here we report an efficient mechanochemical CO2 capture and conversion under mild conditions (65 °C). Using commercial zirconium oxide (ZrO2) and nickel catalysts, the mechanochemical CO2 capture capacity was 75-fold higher than the conventional thermochemical process. The mechanochemical CO2 conversion reached a nearly quantitative CO2 conversion (99.2%) with CH4 selectivity (98.8%). We determined that repeatedly induced abundant oxygen vacancies on ZrO2 by dynamic mechanical actions are responsible for efficient CO2 capture and, thus, subsequently spontaneous methanation.

This is a preview of subscription content, access via your institution

Access options

Fig. 1
Fig. 2: Activities of mechanochemical CO2 methanation.
Fig. 3: Characterizations of ZrO2–CO2* (product of CO2 capture step) and as-prepared Ni/ZrO2 catalysts (product of CO2 conversion step).
Fig. 4: Theoretical analysis of mechanochemical CO2 capture and conversion.

Similar content being viewed by others

Data availability

All data that support the findings of this study are presented in the article and its Supplementary Information and are available from the corresponding author upon reasonable request.

References

  1. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  PubMed  Google Scholar 

  2. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Chang. 7, 243–249 (2017).

    Article  Google Scholar 

  6. Kang, Z., Liao, Q., Zhang, Z. & Zhang, Y. Carbon neutrality orientates the reform of the steel industry. Nat. Mater. 21, 1094–1098 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Tan, T. H. et al. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat. Catal. 3, 1034–1043 (2020).

    Article  CAS  Google Scholar 

  8. Fan, M. et al. Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions. Nat. Commun. 14, 3314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tébar-Soler, C. et al. Low-oxidation-state Ru sites stabilized in carbon-doped RuO2 with low-temperature CO2 activation to yield methane. Nat. Mater. 22, 762–768 (2023).

    Article  PubMed  Google Scholar 

  10. Kang, H. et al. Understanding the complexity in bridging thermal and electrocatalytic methanation of CO2. Chem. Soc. Rev. 52, 3627–3662 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, H. et al. Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with activities approaching the thermodynamic limit. Nat. Catal. 6, 519–530 (2023).

    Article  CAS  Google Scholar 

  12. Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    Article  CAS  Google Scholar 

  13. Song, Y. et al. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Beaumont, S. K. et al. Combining in situ NEXAFS spectroscopy and CO2 methanation kinetics to study Pt and Co nanoparticle catalysts reveals key insights into the role of platinum in promoted cobalt catalysis. J. Am. Chem. Soc. 136, 9898–9901 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaissance of the Sabatier reaction and its applications on earth and in space. Nat. Catal. 2, 188–197 (2019).

    Article  CAS  Google Scholar 

  16. Zhu, X. et al. Supercharged CO2 photothermal catalytic methanation: high conversion, rate, and selectivity. Angew. Chem. Int. Ed. 62, e202218694 (2023).

    Article  CAS  Google Scholar 

  17. Ahmad, F. et al. Low-temperature CO2 methanation: synergistic effects in plasma-Ni hybrid catalytic system. ACS Sustain. Chem. Eng. 8, 1888–1898 (2020).

    Article  CAS  Google Scholar 

  18. Li, Y. et al. Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nat. Commun. 11, 6190 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han, G.-F. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 16, 325–330 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Reichle, S., Felderhoff, M. & Schuth, F. Mechanocatalytic room-temperature synthesis of ammonia from its elements down to atmospheric pressure. Angew. Chem. Int. Ed. 60, 26385–26389 (2021).

    Article  CAS  Google Scholar 

  21. Han, G.-F. et al. Extreme enhancement of carbon hydrogasification via mechanochemistry. Angew. Chem. Int. Ed. 61, e202117851 (2022).

    Article  CAS  Google Scholar 

  22. Eckert, R., Felderhoff, M. & Schüth, F. Preferential carbon monoxide oxidation over copper-based catalysts under in-situ ball milling. Angew. Chem. Int. Ed. 56, 2445–2448 (2017).

    Article  CAS  Google Scholar 

  23. Amrute, A. P., Łodziana, Z., Schreyer, H., Weidenthaler, C. & Schüth, F. High-surface-area corundum by mechanochemically induced phase transformation of boehmite. Science 366, 485–489 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Zholdassov, Y. S. et al. Acceleration of Diels–Alder reactions by mechanical distortion. Science 380, 1053–1058 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, W. et al. Deforming lanthanum trihydride for superionic conduction. Nature 616, 73–76 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Khajavi, S., Rajabi, M. & Huot, J. Effect of cold rolling and ball milling on first hydrogenation of Ti0.5Zr0.5 (Mn1-xFex) Cr1, x=0, 0.2, 0.4. J. Alloy. Compd. 775, 912–920 (2019).

    Article  CAS  Google Scholar 

  27. Han, G.-F. et al. Abrading bulk metal into single atoms. Nat. Nanotechnol. 17, 403–407 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 4, 952–958 (2021).

    Article  CAS  Google Scholar 

  29. Duyar, M. S., Treviño, M. A. A. & Farrauto, R. J. Dual function materials for CO2 capture and conversion using renewable H2. Appl. Catal. B 168–169, 370–376 (2015).

    Article  Google Scholar 

  30. Espinal, L., Poster, D. L., Wong-Ng, W., Allen, A. J. & Green, M. L. Measurement, standards, and data needs for CO2 capture materials: a critical review. Environ. Sci. Technol. 47, 11960–11975 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Q., Luo, J., Zhong, Z. & Borgna, A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011).

    Article  CAS  Google Scholar 

  32. Mazheika, A. et al. Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides. Nat. Commun. 13, 419 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ndayiragije, S. et al. Mechanochemically tailoring oxygen vacancies of MnO2 for efficient degradation of tetrabromobisphenol A with peroxymonosulfate. Appl. Catal. B 307, 121168 (2022).

    Article  CAS  Google Scholar 

  34. Jia, X., Zhang, X., Rui, N., Hu, X. & Liu, C.-j Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B 244, 159–169 (2019).

    Article  CAS  Google Scholar 

  35. Wei, X. et al. Oxygen vacancy-mediated selective C–N coupling toward electrocatalytic urea synthesis. J. Am. Chem. Soc. 144, 11530–11535 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, J. et al. Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Appl. Catal. B 202, 642–652 (2017).

    Article  CAS  Google Scholar 

  37. Belgamwar, R. et al. Defects tune the strong metal–support interactions in copper supported on defected titanium dioxide catalysts for CO2 reduction. J. Am. Chem. Soc. 145, 8634–8646 (2023).

    Article  CAS  Google Scholar 

  38. Han, G.-F. et al. Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Sci. Adv. 5, eaax8275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren, J., Zeng, F., Mebrahtu, C. & Palkovits, R. Understanding promotional effects of trace oxygen in CO2 methanation over Ni/ZrO2 catalysts. J. Catal. 405, 385–390 (2022).

    Article  CAS  Google Scholar 

  40. Zhu, M. et al. Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation. Appl. Catal. B 282, 119561 (2021).

    Article  CAS  Google Scholar 

  41. Westermann, A. et al. Insight into CO2 methanation mechanism over NiUSY zeolites: an operando IR study. Appl. Catal. B 174–175, 120–125 (2015).

    Article  Google Scholar 

  42. Pan, Q., Peng, J., Sun, T., Wang, S. & Wang, S. Insight into the reaction route of CO2 methanation: promotion effect of medium basic sites. Catal. Commun. 45, 74–78 (2014).

    Article  Google Scholar 

  43. Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering (Springer, 2008).

  44. Lee, T. H. & Elliott, S. R. Ab initio computer simulation of the early stages of crystallization: application to Ge2Sb2Te5 phase-change materials. Phys. Rev. Lett. 107, 145702 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    Article  PubMed  Google Scholar 

  46. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17980 (1994).

    Article  Google Scholar 

  47. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  48. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Moellmann, J. & Grimme, S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 118, 7615–7621 (2014).

    Article  CAS  Google Scholar 

  50. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research programmes (RS-2023-00221668, RS-2024-00435493 and RS-2024-00466616 to J.-B.B.) through the National Research Foundation (NRF) of Korea, Carbon Neutrality Demonstration and Research Center (1.240027.01 to H.L.), National Natural Science Foundation of China (21873088 to Q.X.L.) and the Innovation Program for Quantum Science and Technology (no. 2021ZD0303306 to Q.X.L.). The computational resources are provided by the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

J.-B.B. conceived the project and oversaw all the research phases. R.G. conducted experiments and characterizations. L.S. carried out DFT calculations. J.G. performed the economic analysis. C.L., J.-M.S., B.-J.J., S.-H.K. and J.K. helped with characterizations. J.-M.S. helped with visualization. R.G., L.S., J.G., H.L., Q.X.L. and J.-B.B. co-wrote the paper, and all the authors commented on it.

Corresponding authors

Correspondence to Hankwon Lim, Qunxiang Li or Jong-Beom Baek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Ding Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, texts, Figs. 1–43, Tables 1–5 and references.

Supplementary Video 1

Presentation of mechanochemical CO2 methanation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, R., Sheng, L., Li, C. et al. Mechanochemical carbon dioxide capture and conversion. Nat. Nanotechnol. (2025). https://doi.org/10.1038/s41565-025-01949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-025-01949-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing