Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Image-guided computational holographic wavefront shaping

An Author Correction to this article was published on 06 November 2024

This article has been updated

Abstract

Optical imaging through scattering media is important in a variety of fields ranging from microscopy to autonomous vehicles. Although advanced wavefront shaping techniques have offered several breakthroughs in the past decade, current techniques still require a known guide star and a high-resolution spatial light modulator or a very large number of measurements and are limited in their correction field of view. Here we introduce a guide-star-free, non-invasive approach that can correct more than 190,000 scattered modes using only 25 incoherently compounded, holographically measured, scattered light fields, obtained under unknown random illuminations. This is achieved by computationally emulating an image-guided wavefront shaping experiment, where several virtual spatial light modulators are simultaneously optimized to maximize the reconstructed image quality. Our method shifts the burden from the physical hardware to a digital, naturally parallelizable computational optimization, leveraging state-of-the-art automatic differentiation tools. We demonstrate the flexibility and generality of this framework by applying it to imaging through various complex samples and imaging modalities, including epi-illumination, anisoplanatic multi-conjugate correction of highly scattering layers, lensless endoscopy in multicore fibres and acousto-optic tomography. The presented approach offers high versatility, effectiveness and generality for fast, non-invasive imaging in diverse applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Image-guided computational holographic wavefront shaping.
Fig. 2: Experimental coherence-gated imaging of a complex, layered target through a highly scattering diffuser in reflection.
Fig. 3: Experimental imaging through a highly scattering sample in transmission comparing corrections using different image quality metrics.
Fig. 4: Multi-conjugate anisoplanatic correction through a layered multiple-scattering sample.
Fig. 5: Computational-image-guided lensless endoscopy through MCFs.

Similar content being viewed by others

Data availability

Measurement data for Fig. 3 are available via figshare at https://doi.org/10.6084/m9.figshare.23790264 (ref. 55).

Code availability

The core optimization code is available via figshare at https://doi.org/10.6084/m9.figshare.23790264 (ref. 55) and via GitHub at https://github.com/Imaging-Lab-HUJI/Image-guided-Computational-Holographic-Wavefront-Shaping.

Change history

References

  1. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  MATH  Google Scholar 

  2. Bertolotti, J. & Katz, O. Imaging in complex media. Nat. Phys. 18, 1008–1017 (2022).

    Article  MATH  Google Scholar 

  3. Davies, R. & Kasper, M. Adaptive optics for astronomy. Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).

    Article  ADS  MATH  Google Scholar 

  4. Lerosey, G. & Fink, M. Wavefront shaping for wireless communications in complex media: from time reversal to reconfigurable intelligent surfaces. Proc. IEEE 110, 1210–1226 (2022).

    Article  MATH  Google Scholar 

  5. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  6. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    Article  ADS  MATH  Google Scholar 

  7. Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    Article  ADS  MATH  Google Scholar 

  8. Cao, R., de Goumoens, F., Blochet, B., Xu, J. & Yang, C. High-resolution non-line-of-sight imaging employing active focusing. Nat. Photon. 16, 462–468 (2022).

    Article  ADS  Google Scholar 

  9. Booth, M. J., Débarre, D. & Jesacher, A. Adaptive optics for biomedical microscopy. Opt. Photonics News 23, 22–29 (2012).

    Article  ADS  Google Scholar 

  10. Li, J. et al. Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor. Optica 2, 682–688 (2015).

    Article  ADS  MATH  Google Scholar 

  11. Park, J.-H., Sun, W. & Cui, M. High-resolution in vivo imaging of mouse brain through the intact skull. Proc. Natl Acad. Sci. USA 112, 9236–9241 (2015).

    Article  ADS  MATH  Google Scholar 

  12. Papadopoulos, I. N., Jouhanneau, J.-S., Poulet, J. F. A. & Judkewitz, B. Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nat. Photon. 11, 116–123 (2017).

    Article  ADS  Google Scholar 

  13. Badon, A. et al. Distortion matrix concept for deep optical imaging in scattering media. Sci. Adv. 6, eaay7170 (2020).

    Article  ADS  Google Scholar 

  14. Kang, S. et al. Tracing multiple scattering trajectories for deep optical imaging in scattering media. Nat. Commun. 14, 6871 (2023).

  15. May, M. A. et al. Fast holographic scattering compensation for deep tissue biological imaging. Nat. Commun. 12, 4340 (2021).

    Article  ADS  MATH  Google Scholar 

  16. Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

    Article  ADS  MATH  Google Scholar 

  17. Najar, U. et al. Harnessing forward multiple scattering for optical imaging deep inside an opaque medium. Nat. Commun. 15, 7349 (2024).

    Article  MATH  Google Scholar 

  18. Aizik, D., Gkioulekas, I. & Levin, A. Fluorescent wavefront shaping using incoherent iterative phase conjugation. Optica 9, 746–754 (2022).

    Article  ADS  MATH  Google Scholar 

  19. Choi, W. et al. Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues. Nat. Commun. 13, 4469 (2022).

    Article  ADS  MATH  Google Scholar 

  20. Cheng, Z., Li, C., Khadria, A., Zhang, Y. & Wang, L. V. High-gain and high-speed wavefront shaping through scattering media. Nat. Photon. 17, 299–305 (2023).

    Article  ADS  MATH  Google Scholar 

  21. Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    Article  ADS  MATH  Google Scholar 

  22. Katz, O., Heidmann, P., Fink, M. & Gigan, S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photon. 8, 784–790 (2014).

    Article  ADS  Google Scholar 

  23. Porat, A. et al. Widefield lensless imaging through a fiber bundle via speckle correlations. Opt. Express 24, 16835–16855 (2016).

    Article  ADS  MATH  Google Scholar 

  24. Rosenfeld, M. et al. Acousto-optic ptychography. Optica 8, 936–943 (2021).

    Article  ADS  Google Scholar 

  25. Daniel, A., Oron, D. & Silberberg, Y. Light focusing through scattering media via linear fluorescence variance maximization, and its application for fluorescence imaging. Opt. Express 27, 21778–21786 (2019).

    Article  ADS  MATH  Google Scholar 

  26. Boniface, A., Blochet, B., Dong, J. & Gigan, S. Noninvasive light focusing in scattering media using speckle variance optimization. Optica 6, 1381–1385 (2019).

    Article  ADS  Google Scholar 

  27. Yeminy, T. & Katz, O. Guidestar-free image-guided wavefront shaping. Sci. Adv. 7, eabf5364 (2021).

    Article  ADS  Google Scholar 

  28. Boniface, A., Dong, J. & Gigan, S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun. 11, 6154 (2020).

    Article  ADS  MATH  Google Scholar 

  29. Lee, H. et al. High-throughput volumetric adaptive optical imaging using compressed time-reversal matrix. Light Sci. Appl. 11, 16 (2022).

    Article  ADS  MATH  Google Scholar 

  30. Tippie, A. E., Kumar, A. & Fienup, J. R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction. Opt. Express 19, 12027–12038 (2011).

    Article  ADS  MATH  Google Scholar 

  31. Adie, S. G., Graf, B. W., Ahmad, A., Carney, P. S. & Boppart, S. A. Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc. Natl Acad. Sci. USA 109, 7175–7180 (2012).

    Article  ADS  Google Scholar 

  32. Hillmann, D. et al. Aberration-free volumetric high-speed imaging of in vivo retina. Sci. Rep. 6, 35209 (2016).

    Article  ADS  MATH  Google Scholar 

  33. Schulz, T. J. Optimal sharpness function for SAR autofocus. IEEE Signal Process. Lett. 14, 27–30 (2006).

    Article  ADS  MATH  Google Scholar 

  34. Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517–522 (2015).

    Article  ADS  MATH  Google Scholar 

  35. Feng, B. Y. et al. NeuWS: neural wavefront shaping for guidestar-free imaging through static and dynamic scattering media. Sci. Adv. 9, eadg4671 (2023).

    Article  Google Scholar 

  36. Débarre, D., Booth, M. J. & Wilson, T. Image based adaptive optics through optimisation of low spatial frequencies. Opt. Express 15, 8176–8190 (2007).

    Article  ADS  MATH  Google Scholar 

  37. Gabor, D. Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lond. A 197, 454–487 (1949).

    Article  ADS  MATH  Google Scholar 

  38. Paszke, A. et al. Automatic differentiation in PyTorch. NeurIPS Autodiff Workshop https://openreview.net/forum?id=BJJsrmfCZ (2017).

  39. Muller, R. A. & Buffington, A. Real-time correction of atmospherically degraded telescope images through image sharpening. J. Opt. Soc. Am. 64, 1200–1210 (1974).

    Article  ADS  MATH  Google Scholar 

  40. Goodman, J. W. Some fundamental properties of speckle. J. Opt. Soc. Am. 66, 1145–1150 (1976).

    Article  ADS  MATH  Google Scholar 

  41. Beckers, J. M. Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. In Very Large Telescopes and Their Instrumentation (ed. Ulrich, M.-H.) 693 (European Southern Observatory, 1988).

  42. Li, R. et al. Rapid wide-field imaging through scattering media by digital holographic wavefront correction. Appl. Opt. 58, 2845–2853 (2019).

    Article  ADS  MATH  Google Scholar 

  43. Andresen, E. R., Bouwmans, G., Monneret, S. & Rigneault, H. Two-photon lensless endoscope. Opt. Express 21, 20713–20721 (2013).

    Article  ADS  Google Scholar 

  44. Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photon. 9, 529–535 (2015).

    Article  ADS  MATH  Google Scholar 

  45. Weiss, U. & Katz, O. Two-photon lensless micro-endoscopy with in-situ wavefront correction. Opt. Express 26, 28808–28817 (2018).

    Article  ADS  Google Scholar 

  46. Kang, S. et al. High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering. Nat. Commun. 8, 2157 (2017).

    Article  ADS  MATH  Google Scholar 

  47. Osnabrugge, G., Horstmeyer, R., Papadopoulos, I. N., Judkewitz, B. & Vellekoop, I. M. Generalized optical memory effect. Optica 4, 886–892 (2017).

    Article  ADS  Google Scholar 

  48. Chen, M., Ren, D., Liu, H.-Y., Chowdhury, S. & Waller, L. Multi-layer born multiple-scattering model for 3D phase microscopy. Optica 7, 394–403 (2020).

    Article  ADS  MATH  Google Scholar 

  49. Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978).

    Article  ADS  MATH  Google Scholar 

  50. Barré, N. & Jesacher, A. Inverse design of gradient-index volume multimode converters. Opt. Express 30, 10573–10587 (2022).

    Article  ADS  MATH  Google Scholar 

  51. Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

    Article  ADS  MATH  Google Scholar 

  52. Goodman, J. W. Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

  53. Fienup, J. R. & Miller, J. J. Aberration correction by maximizing generalized sharpness metrics. J. Opt. Soc. Am. A 20, 609–620 (2003).

    Article  ADS  MATH  Google Scholar 

  54. Barzilai, J. & Borwein, J. M. Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  55. Haim, O., Boger-Lombard, J. & Katz, O. Image-guided computational holographic wavefront shaping. figshare https://doi.org/10.6084/m9.figshare.23790264 (2024).

Download references

Acknowledgements

We thank G. Weinberg, Y. Slobodkin and E. Sunray for fruitful discussions and M. Rosenfeld for providing the acousto-optic tomography data. This work has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant no. 101002406). This research was supported by a scholarship sponsored by the Ministry of Innovation, Science & Technology, Israel.

Author information

Authors and Affiliations

Authors

Contributions

O.K. conceived the idea. O.K., O.H. and J.B.-L. designed the experimental setup. O.H. and J.B.-L. performed the numerical simulations and data analysis. O.H. designed and implemented the automatic-differentiation-based gradient-ascent algorithm. J.B.-L. led the experimental work. J.B.-L. and O.H. performed the experiments and analysed the data under the supervision of O.K. All authors wrote the manuscript.

Corresponding author

Correspondence to Ori Katz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Alexandre Aubry, Monika Ritsch-Marte, Ashok Veeraraghavan and Ivo Vellekoop for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–11 and Figs. 1–12.

Supplementary Video 1

Evolution of the reconstruction process over iterations, yielding the data in Fig. 2b–d (time gate 1 data).

Supplementary Video 2

Evolution of the reconstruction process over iterations, yielding the data in Fig. 2e–g (time gate 2 data).

Supplementary Video 3

Phase-corrected fields propagated to the USAF-1951 target plane, revealing the transmission image from light weakly reflected by the onion skin slice (Fig. 2h).

Supplementary Video 4

Comparison of corrected and uncorrected incoherently compounded fields from time gate 1 data (Fig. 2) as they are digitally refocused from the scattering layer to the plane of the target object.

Supplementary Video 5

Optimization of multi-conjugate reconstruction with two virtual SLM phase masks, achieving anisoplanatic correction across a wide FoV.

Supplementary Video 6

Phase and amplitude images of 100 reconstructed complex fields corresponding to the results in Fig. 3c, demonstrating access to the complex field at the object plane.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haim, O., Boger-Lombard, J. & Katz, O. Image-guided computational holographic wavefront shaping. Nat. Photon. 19, 44–53 (2025). https://doi.org/10.1038/s41566-024-01544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-024-01544-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing