Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum tunnelling with tunable spin geometric phases in van der Waals antiferromagnets

Abstract

Electron tunnelling in solids, a fundamental quantum phenomenon, lays the foundation for various modern technologies. The emergence of van der Waals magnets presents opportunities for discovering unconventional tunnelling phenomena. Here, we demonstrate quantum tunnelling with tunable spin geometric phases in a multilayer van der Waals antiferromagnet CrPS4. The spin geometric phase of electron tunnelling is controlled by magnetic-field-dependent metamagnetic phase transitions. The square lattice of a CrPS4 monolayer causes strong t2g-orbital delocalization near the conduction band minimum. This creates a one-dimensional spin system with reversed energy ordering between the t2g and eg spin channels, which prohibits both intralayer spin relaxation by means of collective magnon excitations and interlayer spin hopping between the t2g and eg spin channels. The resulting coherent electron transmission shows pronounced tunnel magnetoresistance oscillations, manifesting quantum interference of cyclic quantum evolutions of individual electron Bloch waves by means of the time-reversal symmetrical tunnelling loops. Our results suggest the appearance of Aharonov–Anandan phases that originate from the non-adiabatic generalization of the Berry’s phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PQT in CrPS4 MTJs.
Fig. 2: Quantum interferences of parallel tunnelling with tunable spin geometric phases controlled by the CAFM transitions in CrPS4 MTJs.
Fig. 3: Spin winding numbers and spin geometric phases for PQT in CrPS4 MTJs.
Fig. 4: Layer- and Vb-dependent PQT with ultra tunable spin geometric phases.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the paper and its Supplementary Information files. Source data are provided with this paper. Extra data are available from the corresponding authors upon request.

References

  1. Esaki, L. New phenomenon in narrow germanium p-n junctions. Phys. Rev. 109, 603 (1958).

    ADS  Google Scholar 

  2. Sze, S. M. & Lee, M. K. Semiconductor Devices: Physics and Technology (Wiley, 2012).

  3. Binning, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    ADS  Google Scholar 

  4. Fowler, R. H. & Nordheim, L. Electron emission in intense electric field. Proc. R. Soc. A 119, 173–181 (1928).

    ADS  Google Scholar 

  5. Giaever, I. Energy gap in superconductors measured by electron tunneling. Phys. Rev. Lett. 5, 147–148 (1960).

    ADS  Google Scholar 

  6. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    ADS  Google Scholar 

  7. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Google Scholar 

  8. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

    Google Scholar 

  9. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    ADS  Google Scholar 

  10. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    ADS  Google Scholar 

  11. Fei, Z. et al. Two-dimensional itinerant Ising ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    ADS  Google Scholar 

  12. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    ADS  Google Scholar 

  13. Worledge, D. C. & Geballe, T. H. Magnetoresistive double spin filter tunnel junction. J. Appl. Phys. 88, 5277–5279 (2000).

    ADS  Google Scholar 

  14. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    ADS  Google Scholar 

  15. Wang, Z. et al. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 14, 1116–1122 (2019).

    ADS  Google Scholar 

  16. Peng, Y. et al. Magnetic structure and metamagnetic transitions in the van der Waals antiferromagnet CrPS4. Adv. Mater. 32, 202001200 (2020).

    Google Scholar 

  17. Qiu, Z. et al. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nat. Commun. 12, 70 (2021).

    ADS  Google Scholar 

  18. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    ADS  Google Scholar 

  19. Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Google Scholar 

  20. Zhang, M. J. et al. Spin-lattice coupled metamagnetism in frustrated van der Waals magnet CrOCl. Small 19, 2300964 (2023).

    Google Scholar 

  21. Miao, G., Müller, M. & Moodera, J. S. Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. Phys. Rev. Lett. 102, 076601 (2009).

    ADS  Google Scholar 

  22. Nagamiya, T., Yosida, K. & Kubo, R. Antiferromagnetism. Adv. Phys. 4, 1–112 (1955).

    ADS  Google Scholar 

  23. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 67, 725 (1995).

    ADS  Google Scholar 

  24. Zhang, X. X. & Nagaosa, N. Dissipative Berry phase effect in quantum tunneling. Phys. Rev. B 102, 245426 (2020).

    ADS  Google Scholar 

  25. Loss, D., DiVincenzo, D. P. & Grinstein, G. Suppression of tunneling by interference in half-integer-spin particles. Phys. Rev. Lett. 69, 3232 (1992).

    ADS  Google Scholar 

  26. von Delft, J. & Henley, C. L. Destructive quantum interference in spin tunneling problems. Phys. Rev. Lett. 69, 3236 (1992).

    ADS  Google Scholar 

  27. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–47 (1984).

    ADS  MathSciNet  Google Scholar 

  28. Aharonov, Y. & Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987).

    ADS  MathSciNet  Google Scholar 

  29. Anandan, J. The geometric phase. Nature 360, 307–313 (1992).

    ADS  Google Scholar 

  30. Bud’ko, S. L., Gati, E., Slade, T. J. & Canfield, P. C. Magnetic order in the van der Waals CrPS4: anisotropic HT phase diagrams and effects of pressure. Phys. Rev. B 103, 224407 (2021).

    ADS  Google Scholar 

  31. Son, J. et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 15, 16904–16912 (2021).

    Google Scholar 

  32. Greenaway, M. et al. Resonant tunnelling between the chiral Landau states of twisted graphene lattices. Nat. Phys. 11, 1057–1062 (2015).

    Google Scholar 

  33. Nagaswa, F., Takagi, J., Kunihashi, Y., Kohda, M. & Nitta, J. Experimental demonstration of spin geometric phase: radius dependence of time-reversal Aharonov–Casher oscillations. Phys. Rev. Lett. 108, 086801 (2012).

    ADS  Google Scholar 

  34. Nagaswa, F., Frustaglia, D., Saarikoski, H., Richter, K. & Nitta, J. Control of the spin geometric phase in semiconductor quantum rings. Nat. Commun. 4, 2526 (2013).

    ADS  Google Scholar 

  35. Loss, D., Goldbart, P. & Balasky, A. V. Berry’s phase and persistent charge and spin currents in textured mesoscopic rings. Phys. Rev. Lett. 65, 1655 (1990).

    ADS  Google Scholar 

  36. Aronov, A. G. & Lyanda-Geller, Y. B. Spin-orbit Berry phase in conducting rings. Phys. Rev. Lett. 70, 343 (1993).

    ADS  Google Scholar 

  37. Qian, T.-Z. & Su, Z.-B. Spin-orbit interaction and Aharonov-Anandan phase in mesoscopic rings. Phys. Rev. Lett. 72, 2311 (1994).

    ADS  Google Scholar 

  38. Meijer, F. E., Morpurgo, A. F. & Klapwikj, T. M. One-dimensional ring in the presence of Rashba spin-orbit interaction: derivation of the correct Hamiltonian. Phys. Rev. B 66, 033107 (2002).

    ADS  Google Scholar 

  39. Nitta, J., Meijer, F. E. & Takayanagi, H. Spin-interference device. Appl. Phys. Lett. 75, 695–697 (1999).

    ADS  Google Scholar 

  40. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959).

    ADS  MathSciNet  Google Scholar 

  41. Al’tshuler, B. L., Aronov, A. G. & Spivak, B. Z. The Aharonov–Bohm effect in disordered conductors. JETP Lett. 33, 94 (1981).

    ADS  Google Scholar 

  42. Frustaglia, D. & Richter, K. Spin interference effects in ring conductors subject to Rashba coupling. Phys. Rev. B 69, 235310 (2004).

    ADS  Google Scholar 

  43. Wu, F. et al. Quasi-1D electronic transport in a 2D magnetic semiconductor. Adv. Mater. 34, 2109759 (2022).

    Google Scholar 

  44. Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N. & van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Appl. Phys. Lett. 105, 013101 (2014).

    ADS  Google Scholar 

  45. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    ADS  Google Scholar 

  46. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Google Scholar 

  48. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    ADS  Google Scholar 

  49. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Google Scholar 

  50. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    ADS  Google Scholar 

  51. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Programme of the MOST of China (Grant No. 2023YFA1406302 to Y.Z.), the National Science Foundation of China (Grant Nos. 12374194 and 12241401 to Y.Z. and J.B.Y., respectively) and the Zhejiang Provincial Natural Science Foundation (D19A040001 to Y.Z.). Y.Z. acknowledges support from the Users with Excellence Project of Hefei Science Center CAS, 2021HSC-UE007.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. conceived and supervised the project. M.C., Q.F.H. and C.Y.D. synthesized CrPS4 single crystals, fabricated CrPS4 MTJs and carried out all the measurements. C.Q.H., Y.Q.H. and Y.H.L. did the DFT calculations. K.W. and T.T. prepared high-quality boron nitride single crystals. M.C., Q.F.H., Y.Q.H., C.Y.D. and Y.Z. analysed the data and wrote the paper with input from all authors.

Corresponding authors

Correspondence to Yunhao Lu or Yi Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temperature-dependent TMR oscillations of CrPS4 MTJ device with H.

a, Temperature-dependent It vs H characteristics of the 6-layer CrPS4 MTJ device with NbSe2 contacts (Nb-D46). The saturation field Hsat and the constructive oscillation peaks (p1 and p2) at 2 K are marked by arrows. b, The derivative dI/dH of the data in (a). The black and olive dashed lines label the positions of Hsat and the oscillation peaks respectively.

Source data

Extended Data Fig. 2 AA geometric phase analyses of parallel quantum tunnelling in bilayer CrPS4 MTJ by the 1D AFM SOC ring model.

a, Parallel quantum tunnelling of an electron spin wave through a bilayer CrPS4 MTJ in the AFM ground state. The interlayer AFM coupling enforces interfacial spin-basis rotations with opposite directions for the \({\Psi }_{{e}_{g}}\) and \({\Psi }_{{t}_{2g}}\) pathways respectively, each contributes a half circling on the equatorial plane of the Bloch sphere, and thus, generates a spin geometric phase of π (a and c). Note that the spin geometric phase, which is decided by the spin winding number \({\mathbb{Z}}\) of the two-state spin system, is invariant under a TR operation (b and d).

Extended Data Fig. 3 Simulations of layer-dependent tunneling magnetoresistance of CrPS4 MTJs.

a, Simulation results by the PQT model, which show excellent consistency with the experimental results, including the even-odd starting AA phases and the (N-1)/2 quantum interference peak numbers. b, Simulation results by the multiple spin-filter model. In consistent with the previous literatures on CrX3, the multiple spin-filter model yields monotonic growth in tunneling magnetoresistance when the CrPS4 channels of different thicknesses are in the CAFM phase.

Source data

Extended Data Fig. 4 Layer-dependent TMR oscillations in CrPS4 MTJs using NbSe2 electrodes with consecutive thicknesses from 8 MLs to 2 MLs with Vb = 10 mV for H.

These data are in complementary to Fig. 4b in the main text (H).

Source data

Extended Data Fig. 5 Vb-dependent evolutions in the TMR oscillations of 8-layer MTJ (D36) with graphene electrodes.

Due to the tilting of tunnelling barrier potential, Neff is reduced to 7 MLs for Vb = 80 mV and 6 MLs for Vb = 140 mV, respectively.

Source data

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Table 1 and Figs. 1–21.

Source data

Source Data Fig. 1

Unprocessed source data.

Source Data Fig. 2

Unprocessed source data.

Source Data Fig. 3

Unprocessed source data.

Source Data Fig. 4

Unprocessed source data.

Source Data Extended Data Fig. 1

Unprocessed source data.

Source Data Extended Data Fig. 3

Unprocessed source data.

Source Data Extended Data Fig. 4

Unprocessed source data.

Source Data Extended Data Fig. 5

Unprocessed source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Hu, Q., Huang, Y. et al. Quantum tunnelling with tunable spin geometric phases in van der Waals antiferromagnets. Nat. Phys. 20, 1973–1979 (2024). https://doi.org/10.1038/s41567-024-02675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02675-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing