Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast quantum gas formation via electromagnetically induced transparency cooling

Abstract

Ultracold quantum gases play a pivotal role in many-body physics, quantum sensing and quantum simulation. Over time, methods such as evaporative cooling in bulk ensembles and precision laser-cooling have been employed to effectively achieve quantum degeneracy in atomic gases. A simpler and more rapid way to form quantum gases would, thus, hold considerable promise in advancing the field. Here, we report the creation of a quantum gas by cooling individual rubidium atoms pinned in a three-dimensional optical lattice using electromagnetically induced transparency and adiabatic expansion. After just 10 ms of cooling, we verified the phase transition from a thermal to a quantum gas by adiabatically transferring the atoms to optical dipole traps. We observed the collapse of atoms in three-dimensional traps, a distinctive hallmark of a quantum gas with negative scattering length. Additionally, in a one-dimensional optical trap, we observed the emergence of a stable and strongly correlated quantum gas. Our results introduce a versatile and fast approach to achieving quantum degenerate gases with minimal time and resource requirements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental details.
Fig. 2: Atom cooling in the 3D optical lattice.
Fig. 3: Collapse of the quantum gas after adiabatic release into single optical dipole traps.
Fig. 4: One-dimensional quantum gas.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The computer code used to support the conclusions of the current study is available from the corresponding author on reasonable request.

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  2. Pethick, C. J. & Smith, H. Bose-Einstein Condensation in Dilute Gases 2nd edn (Cambridge Univ. Press, 2008).

  3. Davis, K. B., Mewes, M.-O., Joffe, M. A., Andrews, M. R. & Ketterle, W. Evaporative cooling of sodium atoms. Phys. Rev. Lett. 74, 5202 (1995).

    Article  ADS  Google Scholar 

  4. Stellmer, S., Pasquiou, B., Grimm, R. & Schreck, F. Laser cooling to quantum degeneracy. Phys. Rev. Lett. 110, 263003 (2013).

    Article  ADS  Google Scholar 

  5. Hu, J. et al. Creation of a Bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017).

    Article  ADS  MATH  Google Scholar 

  6. Urvoy, A., Vendeiro, Z., Ramette, J., Adiyatullin, A. & Vuletić, V. Direct laser cooling to Bose-Einstein condensation in a dipole trap. Phys. Rev. Lett. 122, 203202 (2019).

    Article  ADS  Google Scholar 

  7. Solano, P. et al. Strongly correlated quantum gas prepared by direct laser cooling. Phys. Rev. Lett. 123, 173401 (2019).

    Article  ADS  MATH  Google Scholar 

  8. Vuletić, V., Chin, C., Kerman, A. J. & Chu, S. Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys. Rev. Lett. 81, 5768–5771 (1998).

    Article  ADS  MATH  Google Scholar 

  9. DePue, M. T., McCormick, C., Winoto, S. L., Oliver, S. & Weiss, D. S. Unity occupation of sites in a 3D optical lattice. Phys. Rev. Lett. 82, 2262–2265 (1999).

    Article  ADS  MATH  Google Scholar 

  10. Kerman, A. J., Vuletić, V., Chin, C. & Chu, S. Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett. 84, 439–442 (2000).

    Article  ADS  Google Scholar 

  11. Han, D.-J. et al. 3D Raman sideband cooling of cesium atoms at high density. Phys. Rev. Lett. 85, 724–727 (2000).

    Article  ADS  MATH  Google Scholar 

  12. Olshanii, M. & Weiss, D. Producing Bose-Einstein condensates using optical lattices. Phys. Rev. Lett. 89, 090404 (2002).

    Article  ADS  Google Scholar 

  13. Morigi, G., Eschner, J. & Keitel, C. H. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett. 85, 4458 (2000).

    Article  ADS  Google Scholar 

  14. Morigi, G. Cooling atomic motion with quantum interference. Phys. Rev. A 67, 033402 (2003).

    Article  ADS  MATH  Google Scholar 

  15. He, P., Tengdin, P. M., Anderson, D. Z., Rey, A. M. & Holland, M. Sub-Doppler laser cooling using electromagnetically induced transparency. Phys. Rev. A 95, 053403 (2017).

    Article  ADS  Google Scholar 

  16. Huang, C., Chai, S. & Lan, S.-Y. Dark-state sideband cooling in an atomic ensemble. Phys. Rev. A 103, 013305 (2021).

    Article  ADS  MATH  Google Scholar 

  17. Ketterle, W., Davis, K. B., Joffe, M. A., Martin, A. & Pritchard, D. E. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 70, 2253 (1993).

    Article  ADS  Google Scholar 

  18. Leong, W. S. et al. Large array of Schrödinger cat states facilitated by an optical waveguide. Nat. Commun. 11, 5295 (2020).

    Article  ADS  MATH  Google Scholar 

  19. Kastberg, A., Phillips, W. D., Rolston, S. L., Spreeuw, R. J. C. & Jessen, P. S. Adiabatic cooling of cesium to 700 nK in an optical lattice. Phys. Rev. Lett. 74, 1542 (1995).

    Article  ADS  Google Scholar 

  20. Ruprecht, P., Holland, M. J., Burnett, K. & Edwards, M. Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A 51, 4704 (1995).

    Article  ADS  Google Scholar 

  21. Donley, E. A. et al. Dynamics of collapsing and exploding Bose‐Einstein condensates. Nature 412, 295 (2001).

    Article  ADS  MATH  Google Scholar 

  22. Rychtarik, D., Engeser, B., Nägerl, H.-C. & Grimm, R. Two-dimensional Bose-Einstein condensate in an optical surface trap. Phys. Rev. Lett. 92, 173003 (2004).

    Article  ADS  Google Scholar 

  23. Saito, H. & Ueda, M. Mean-field analysis of collapsing and exploding Bose-Einstein condensates. Phys. Rev. A 65, 033624 (2002).

    Article  ADS  MATH  Google Scholar 

  24. Cornish, S. L., Thompson, S. T. & Wieman, C. E. Formation of bright matter-wave solitons during the collapse of attractive Bose-Einstein condensates. Phys. Rev. Lett. 96, 170401 (2006).

    Article  ADS  Google Scholar 

  25. Altin, P. A. et al. Collapse and three-body loss in a 85Rb Bose-Einstein condensate. Phys. Rev. A 84, 033632 (2011).

    Article  ADS  MATH  Google Scholar 

  26. Santos, L. & Shlyapnikov, G. V. Collapse dynamics of trapped Bose-Einstein condensates. Phys. Rev. A 66, 011602(R) (2002).

    Article  ADS  MATH  Google Scholar 

  27. Parker, N. G., Cornish, S. L., Adams, C. S. & Martin, A. M. Bright solitary waves and trapped solutions in Bose–Einstein condensates with attractive interactions. J. Phys. B: At. Mol. Phys. 40, 3127 (2007).

    Article  ADS  MATH  Google Scholar 

  28. McDonald, G. D. et al. Bright solitonic matter-wave interferometer. Phys. Rev. Lett. 113, 013002 (2014).

    Article  ADS  Google Scholar 

  29. Astrakharchik, G. E., Blume, D., Giorgini, S. & Granger, B. E. Quasi-one-dimensional Bose gases with a large scattering length. Phys. Rev. Lett. 92, 030402 (2004).

    Article  ADS  MATH  Google Scholar 

  30. Haller, E. et al. Realization of an excited, strongly correlated quantum gas phase. Science 325, 1224 (2009).

    Article  ADS  MATH  Google Scholar 

  31. Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000).

    Article  ADS  Google Scholar 

  32. Kinoshita, T., Wenger, T. & Weiss, D. S. Local pair correlations in one-dimensional Bose gases. Phys. Rev. Lett. 95, 190406 (2005).

    Article  ADS  MATH  Google Scholar 

  33. Kormos, M., Mussardo, G. & Trombettoni, A. Local correlations in the super-Tonks–Girardeau gas. Phys. Rev. A 83, 013617 (2011).

    Article  ADS  MATH  Google Scholar 

  34. Bongs, K. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019).

    Article  MATH  Google Scholar 

  35. Tino, G. M. Testing gravity with cold atom interferometry: results and prospects. Quantum Sci. Technol. 6, 024014 (2021).

    Article  ADS  MATH  Google Scholar 

  36. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  MATH  Google Scholar 

  37. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  MATH  Google Scholar 

  38. Schreck, F. & Druten, K. Laser cooling for quantum gases. Nat. Phys. 17, 1296–1304 (2021).

    Article  MATH  Google Scholar 

  39. Dunjko, V., Lorent, V. & Olshanii, M. Bosons in cigar-shaped traps: Thomas-Fermi regime, Tonks-Girardeau regime, and in between. Phys. Rev. Lett. 86, 5413–5416 (2001).

    Article  ADS  MATH  Google Scholar 

  40. Kheruntsyan, K. V., Gangardt, D. M., Drummond, P. D. & Shlyapnikov, G. V. Finite-temperature correlations and density profiles of an inhomogeneous interacting one-dimensional Bose gas. Phys. Rev. A 71, 053615 (2005).

    Article  ADS  Google Scholar 

  41. Steck, D. A. Rubidium 85 D line data, revision 2.3.2. steck.us https://steck.us/alkalidata/ (2023).

Download references

Acknowledgements

We gratefully acknowledge stimulating discussions with M.-S. Chang and S.-W. Chiow. This work was supported by the Singapore National Research Foundation (Grant Nos. QEP-P4 and NRF2021-QEP2-03-P01 to S.L.), the Singapore Ministry of Education (Grant No. MOE-T2EP50121-0021 to S.L.), the Yushan Fellow Programme of the Ministry of Education of Taiwan (S.L.) and the 2030 Cross-Generation Young Scholars Programme of the National Science and Technology Council of Taiwan (Grant No. 112-2628-M-002-013- to S.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.X., W.S.L. and S.-Y.L. conceived and designed the experiment and analysed the data. M.X. and W.S.L. built the experimental set-up and performed the measurements. S.-Y.L. wrote the manuscript with input and revisions from all authors. S.-Y.L. supervised the project and advised on the overall results in the manuscript. M.X., W.S.L., Z.C., Y.W. and S.-Y.L. discussed the results.

Corresponding authors

Correspondence to Wui Seng Leong or Shau-Yu Lan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Configuration of the optical alignments for EIT cooling, optical lattices, and optical dipole trap.

All the beams follow the x-y plane and y-z planes. The EIT cooling beams follow the MOT beams alignment indicated by the red arrows with circular polarizations. The green arrows that follow the x, y, and z coordinates represent the optical lattices. The blue arrows are the optical dipole trap lasers.

Extended Data Fig. 2 Time-of-flight absorption images after the collapse of the quantum gas.

The x trap is switched on during the last EIT cooling and turned off after 0.9 ms of the adiabatic cooling for the TOF imaging. Gravity acts in the downward z direction.

Source data

Extended Data Fig. 3 Fluorescence images at different sequence stages with a large initial filling factor.

The measured filling factors for the images from left to right are 0.73(1), 2.83(2), and 2.23(1), respectively. The colour scale is in arbitrary unit.

Source data

Extended Data Fig. 4 Last EIT cooling performance for Extended Data Fig. 3.

Atom number and filling factor versus the last EIT cooling time when the initial filling factor is more than 2 before the last EIT cooling. The atom number is measured by fluorescence imaging, and the cloud size is measured by absorption imaging. The 7% atom number decay in 300 μs is mainly the light scattering loss of atoms that are not trapped by the optical lattice. The error bars denote the standard error of the mean of four measurements and include only statistical errors.

Source data

Extended Data Fig. 5 Vibrational spectroscopy with a filling factor of 2.5.

The spectroscopy is performed after the last EIT cooling along the x axis. The error bars denote the standard error of the mean of four measurements.

Source data

Extended Data Fig. 6 Comparison of the ideal and 1D quantum gas using Gaussian fit.

a, The density profile is projected along the y axis after adiabatically turning off the y lattice with ta = 0.2 ms (ideal gas) and ta = 1 ms (1D quantum gas). The data are taken after holding the atoms in the tubes for 10 μs and releasing them with 3 ms TOF. The data curves are fitted with a Gaussian function and the shaded areas represents the difference between the data and the fitted Gaussian functions. b, A 10 ms TOF image of the 1D gas after released from the lattice using the coldest atoms depicted in Fig. 4a for comparison. The errror bars denote the standard error of the mean of 30 measurements.

Source data

Extended Data Fig. 7 Absorption imaging.

a, Absorption image of the atomic cloud in the 3D lattice after the last EIT cooling with most atoms in the F = 3 state for ODp measurement. The absorption beam is red-detuned by 23.4 MHz from the atomic resonance. b, Absorption image of the atomic cloud in the 3D lattice after the last EIT cooling with most atoms in the F = 2 state for cloud size measurement. The absorption beam is tuned to atomic resonance. The colour bar represents measured optical depth.

Source data

Supplementary information

Supplementary Video 1

The collapse dynamics in the y trap at ta = 1 ms. In situ absorption imaging after loading and holding atoms in the y trap. Same collapse process as in Fig. 3a.

Supplementary Video 2

The collapse in the x trap at different ta. Absorption images of the collapse after 10 μs in the x trap and 2 ms TOF. Same collapse process as in Fig. 3d.

Supplementary Video 3

The collapse dynamics in the x trap at ta = 0.9 ms. Same collapse process as in Extended Data Fig. 2.

Source data

Source Data Fig. 2

Source data for the plots.

Source Data Fig. 3

Source data for the plots.

Source Data Fig. 4

Source data for the plots.

Source Data Extended Data Fig.2

Source data for the plots.

Source Data Extended Data Fig.3

Source data for the plots.

Source Data Extended Data Fig.4

Source data for the plots.

Source Data Extended Data Fig.5

Source data for the plots.

Source Data Extended Data Fig.6

Source data for the plots.

Source Data Extended Data Fig.7

Source data for the plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, M., Leong, W.S., Chen, Z. et al. Fast quantum gas formation via electromagnetically induced transparency cooling. Nat. Phys. 21, 63–69 (2025). https://doi.org/10.1038/s41567-024-02677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02677-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing