Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuro-immune cross-talk in cancer

Abstract

The nervous and immune systems have co-evolved to detect and respond to internal and external threats, working together to restore homeostasis after tissue injury or infection. Sharing several receptors and ligands, they engage in direct cross-talk that substantially influences disease development. The emerging field of cancer neuro-immunity focuses on the intricate interactions between the nervous system, immune responses and tumour growth. Additional findings have revealed that nerve fibres infiltrating peripheral tumours can release neuromodulatory factors that shape both immune cell behaviour and tumour progression. Conversely, tumour-infiltrating immune cells can modify the activity of local neurons, including pain-transmitting nociceptive sensory neurons. Beyond sensory fibres, sympathetic signalling can foster immunosuppression by recruiting myeloid-derived suppressor cells and promoting T cell exhaustion. This Review summarizes current evidence on how neuronal signalling regulates peripheral antitumour immune responses within the tumour microenvironment. We describe the complex, reciprocal interactions among neurons, immune cells and malignant cells, highlighting the key parts played by the peripheral nervous system in modulating immunity against cancer. By understanding this neuro-immune axis, novel therapeutic approaches may be uncovered to strengthen antitumour immunity and enhance responses to existing cancer treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumour-innervating nociceptor neurons promote immunosuppression.
Fig. 2: Adrenergic neurons modulate antitumour immunity.
Fig. 3: Non-neuronal neurotransmitter’s role in immunosuppression.

Similar content being viewed by others

References

  1. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao, L., Singh, V., Ricca, A. & Lee, P. Survival benefit of pembrolizumab for patients with pancreatic adenocarcinoma: a case series. J. Med. Cases 13, 240–243 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Storandt, M. H., Tran, N., Martin, N. & Jatoi, A. Pembrolizumab near the end of life in patients with metastatic pancreatic cancer: a multi-site consecutive series to examine survival and patient treatment burden. Cancer Immunol. Immunother. 72, 2515–2520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Emens, L. A. et al. Challenges and opportunities in cancer immunotherapy: a Society for Immunotherapy of Cancer (SITC) strategic vision. J. Immunother. Cancer 12, e009063 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Young, H. H. On the presence of nerves in tumors and of other structures in them as revealed by a modification of Ehrlich’s method of ‘vital staining’ with methylene blue. J. Exp. Med. 2, 1–12 (1897).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baraldi, J. H., Martyn, G. V., Shurin, G. V. & Shurin, M. R. Tumor innervation: history, methodologies, and significance. Cancers 14, 1979 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lucido, C. T. et al. Innervation of cervical carcinoma is mediated by cancer-derived exosomes. Gynecol. Oncol. 154, 228–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao, Q. et al. The clinicopathological significance of neurogenesis in breast cancer. BMC Cancer 14, 484 (2014). This study provides early evidence suggesting that tumour denervation modulates tumour growth.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ayala, G. E. et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin. Cancer Res. 14, 7593–7603 (2008). This seminal study serves as an early example of human tumour innervation, identifying semaphorin 4F as a molecular driver of this process.

    Article  CAS  PubMed  Google Scholar 

  10. Entschladen, F., Palm, D., Lang, K., Drell, T. L. & Zaenker, K. S. Neoneurogenesis: tumors may initiate their own innervation by the release of neurotrophic factors in analogy to lymphangiogenesis and neoangiogenesis. Med. Hypotheses 67, 33–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Madeo, M. et al. Cancer exosomes induce tumor innervation. Nat. Commun. 9, 4284 (2018). This article highlights cancer-derived exosomes as a driver of tumour innervation.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Amit, M. et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 578, 449–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mauffrey, P. et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569, 672–678 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Dobrenis, K., Gauthier, L. R., Barroca, V. & Magnon, C. Granulocyte colony‐stimulating factor off‐target effect on nerve outgrowth promotes prostate cancer development. Int. J. Cancer 136, 982–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Hanahan, D. & Monje, M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell 41, 573–580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Winkler, F. et al. Cancer neuroscience: state of the field, emerging directions. Cell 186, 1689–1707 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Magnon, C. & Hondermarck, H. The neural addiction of cancer. Nat. Rev. Cancer 23, 317–334 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, C.-M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6, 250ra115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Khanmammadova, N., Islam, S., Sharma, P. & Amit, M. Neuro-immune interactions and immuno-oncology. Trends Cancer 9, 636–649 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saloman, J. L. et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl Acad. Sci. USA 113, 3078–3083 (2016). This work is the first demonstration that denervation of nociceptor neurons reduces tumour growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Erin, N. et al. Activation of neuroimmune pathways increases therapeutic effects of radiotherapy on poorly differentiated breast carcinoma. Brain. Behav. Immun. 48, 174–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013). This article presents the first demonstration that tumours are innervated and that this innervation controls tumour growth.

    Article  PubMed  Google Scholar 

  24. Renz, B. W. et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75–90.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Partecke, L. I. et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget 8, 22501–22512 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sampson, J. H., Gunn, M. D., Fecci, P. E. & Ashley, D. M. Brain immunology and immunotherapy in brain tumours. Nat. Rev. Cancer 20, 12–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Strickland, M. R., Alvarez-Breckenridge, C., Gainor, J. F. & Brastianos, P. K. Tumor immune microenvironment of brain metastases: toward unlocking antitumor immunity. Cancer Discov. 12, 1199–1216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Basbaum, A. I. & Julius, D. Toward better pain control. Sci. Am. 294, 60–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Caterina, M. J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Foster, S. L., Talbot, S. & Woolf, C. J. CNS injury: IL-33 sounds the alarm. Immunity 42, 403–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Li, C.-L. et al. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res. 26, 83–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Kupari, J. et al. Single cell transcriptomics of primate sensory neurons identifies cell types associated with chronic pain. Nat. Commun. 12, 1510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143.e23 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kupari, J., Häring, M., Agirre, E., Castelo-Branco, G. & Ernfors, P. An atlas of vagal sensory neurons and their molecular specialization. Cell Rep. 27, 2508–2523.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, S.-H. et al. Mapping of sensory nerve subsets within the vagal ganglia and the brainstem using reporter mice for pirt, TRPV1, 5-HT3, and Tac1 expression. eNeuro https://doi.org/10.1523/ENEURO.0494-19.2020 (2020).

  38. Tochitsky, I. et al. Inhibition of inflammatory pain and cough by a novel charged sodium channel blocker. Br. J. Pharmacol. 178, 3905–3923 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Mathur, S. et al. Nociceptor neurons promote IgE class switch in B cells. JCI Insight 6, e148510 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chiu, I. M., von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15, 1063–1067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhuiyan, S. A. et al. Harmonized cross-species cell atlases of trigeminal and dorsal root ganglia. Sci. Adv. 10, eadj9173 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jain, A. et al. Nociceptor-immune interactomes reveal insult-specific immune signatures of pain. Nat. Immunol. 25, 1296–1305 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Renthal, W. et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes axonal injury. Neuron 108, 128–144.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crosson, T. et al. Profiling of how nociceptor neurons detect danger—new and old foes. J. Intern. Med. 286, 268–289 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Chiu, I. M. et al. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. eLife 3, e04660 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chiu, I. M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013). This important article demonstrates how CGRP released by nociceptor neurons controls antibacterial immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen, J. A. et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 178, 919–932.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tamari, M. et al. Sensory neurons promote immune homeostasis in the lung. Cell 187, 44–61.e17 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Baral, P. et al. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24, 417–426 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pinho-Ribeiro, F. A. et al. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 615, 472–481 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao, Z. et al. Nociceptor neurons are involved in the host response to Escherichia coli urinary tract infections. J. Inflamm. Res. 15, 3337–3353 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yang, N. J. et al. Nociceptive sensory neurons mediate inflammation induced by Bacillus anthracis edema toxin. Front. Immunol. 12, 642373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Enamorado, M. et al. Immunity to the microbiota promotes sensory neuron regeneration. Cell 186, 607–620.e17 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Defaye, M. et al. Gut-innervating TRPV1+ neurons drive chronic visceral pain via microglial P2Y12 receptor. Cell. Mol. Gastroenterol. Hepatol. 13, 977–999 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Serger, E. et al. The gut metabolite indole-3 propionate promotes nerve regeneration and repair. Nature 607, 585–592 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tränkner, D., Hahne, N., Sugino, K., Hoon, M. A. & Zuker, C. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc. Natl Acad. Sci. USA 111, 11515–11520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Talbot, S., Foster, S. L. & Woolf, C. J. Neuroimmunity: physiology and pathology. Annu. Rev. Immunol. 34, 421–447 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Vats, K. et al. Sensory nerves impede the formation of tertiary lymphoid structures and development of protective antimelanoma immune responses. Cancer Immunol. Res. 10, 1141–1154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Balood, M. et al. Nociceptor neurons affect cancer immunosurveillance. Nature 611, 405–412 (2022). This study provides evidence that CGRP regulates antitumour immune responses in melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sinha, S. et al. PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk. Cancer Res. 77, 1868–1879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Meerschaert, K. A. et al. Neuronally expressed PDL1, not PD1, suppresses acute nociception. Brain. Behav. Immun. 106, 233–246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, K. et al. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain. J. Clin. Invest. 130, 3603–3620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, G. et al. PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1. Nat. Neurosci. 20, 917–926 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, H. et al. Intra-tumoural RAMP1+ B cells promote resistance to neoadjuvant anti-PD-1-based therapy in esophageal squamous cell carcinoma. Immunother. Adv. 5, ltaf012 (2025).

  70. Tibensky, M. et al. Topical application of local anesthetics to melanoma increases the efficacy of anti-PD-1 therapy. Neoplasma 70, 375–389 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. McIlvried, L. A., Atherton, M. A., Horan, N. L., Goch, T. N. & Scheff, N. N. Sensory neurotransmitter calcitonin gene-related peptide modulates tumor growth and lymphocyte infiltration in oral squamous cell carcinoma. Adv. Biol. 6, e2200019 (2022). This study demonstrates that CGRP regulates antitumour immune responses in head and neck cancers.

    Article  Google Scholar 

  72. Darragh, L. B. et al. Sensory nerve release of CGRP increases tumor growth in HNSCC by suppressing TILs. Med 5, 254–270.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Jiang, L. et al. Nociceptive adenosine A2A receptor on trigeminal nerves orchestrates CGRP release to regulate the progression of oral squamous cell carcinoma. Int. J. Oral. Sci. 16, 46 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, V. H. et al. The GPCR–Gαs–PKA signaling axis promotes T cell dysfunction and cancer immunotherapy failure. Nat. Immunol. 24, 1318–1330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhi, X. et al. Nociceptive neurons promote gastric tumour progression via a CGRP–RAMP1 axis. Nature 640, 802–810 (2025). This article highlights the presence of active neuro-neoplastic synapses in peripheral tumours and demonstrates that this communication is mediated by the CGRP–RAMP1 axis.

    Article  CAS  PubMed  Google Scholar 

  76. Wang, K. et al. Nociceptor neurons promote PDAC progression and cancer pain by interaction with cancer-associated fibroblasts and suppression of natural killer cells. Cell Res. 35, 362–380 (2025).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, Y. et al. Cancer cells co-opt nociceptive nerves to thrive in nutrient-poor environments and upon nutrient-starvation therapies. Cell Metab. 34, 1999–2017.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Islam, S. et al. Neural landscape is associated with functional outcomes in irradiated patients with oropharyngeal squamous cell carcinoma. Sci. Transl. Med. 16, eabq5585 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Suvas, S. Role of substance P neuropeptide in inflammation, wound healing, and tissue homeostasis. J. Immunol. 199, 1543–1552 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Singh, S. et al. Neuropeptide substance P enhances inflammation-mediated tumor signaling pathways and migration and proliferation of head and neck cancers. Indian. J. Surg. Oncol. 12, 93–102 (2021).

    Article  PubMed  Google Scholar 

  81. Bencze, N. et al. Desensitization of capsaicin-sensitive afferents accelerates early tumor growth via increased vascular leakage in a murine model of triple negative breast cancer. Front. Oncol. 11, 685297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Restaino, A. C. et al. Functional neuronal circuits promote disease progression in cancer. Sci. Adv. 9, eade4443 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Padmanaban, V. et al. Neuronal substance P drives metastasis through an extracellular RNA–TLR7 axis. Nature 633, 207–215 (2024). This article shows that substance P, produced by nociceptor neurons, modulates tumour growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ravindranathan, S. et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat. Commun. 13, 6418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kandel, E. R., Koester, J. D., Mack, S. H. & Siegelbaum, S. A. Principles of Neural Science 6th edn (McGraw Hill, 2021).

  86. Karemaker, J. M. An introduction into autonomic nervous function. Physiol. Meas. 38, R89–R118 (2017).

    Article  PubMed  Google Scholar 

  87. Wehrwein, E. A., Orer, H. S. & Barman, S. M. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr. Physiol. 6, 1239–1278 (2016).

    Article  PubMed  Google Scholar 

  88. McCorry, L. K. Physiology of the autonomic nervous system. Am. J. Pharm. Educ. 71, 78 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Atsumi, K. et al. Sensory neurons in the human jugular ganglion. Tissue Cell 64, 101344 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Bauer, K. C. et al. The gut microbiome controls liver tumors via the vagus nerve. Preprint at bioRxiv https://doi.org/10.1101/2024.01.23.576951 (2024).

  92. Renz, B. W. et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness. Cancer Discov. 8, 1458–1473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng, C. et al. Tumor-specific cholinergic CD4+ T lymphocytes guide immunosurveillance of hepatocellular carcinoma. Nat. Cancer 4, 1437–1454 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhu, J. et al. Tumour immune rejection triggered by activation of α2-adrenergic receptors. Nature 618, 607–615 (2023). This article demonstrates that clonidine-mediated α2-AR activation promotes tumour elimination.

    Article  CAS  PubMed  Google Scholar 

  95. Nevin, J. T., Moussa, M., Corwin, W. L., Mandoiu, I. I. & Srivastava, P. K. Sympathetic nervous tone limits the development of myeloid-derived suppressor cells. Sci. Immunol. 5, eaay9368 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Rump, L. C., Ruff, G., Wolk, V. & Schollmeyer, P. α2-Adrenoceptor activation inhibits noradrenaline release in human and rabbit isolated renal arteries. Eur. J. Pharmacol. 196, 277–283 (1991).

    Article  CAS  PubMed  Google Scholar 

  97. Sloan, E. K. et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 70, 7042–7052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Le, C. P. et al. Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nat. Commun. 7, 10634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Graham, J. A. et al. Suppressive regulatory T cell activity is potentiated by glycogen synthase kinase 3β inhibition. J. Biol. Chem. 285, 32852–32859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Globig, A.-M. et al. The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 622, 383–392 (2023). This article shows that adrenergic neurons promote T cell exhaustion through the β1-AR.

  101. Fu, S. et al. Regulatory mucosa-associated invariant T cells controlled by β1 adrenergic receptor signaling contribute to hepatocellular carcinoma progression. Hepatology 78, 72–87 (2023).

    Article  PubMed  Google Scholar 

  102. Mohammadpour, H. et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Invest. 129, 5537–5552 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mohammadpour, H., MacDonald, C. R., McCarthy, P. L., Abrams, S. I. & Repasky, E. A. β2-Adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME. Cell Rep. 37, 109883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Daneshmandi, S. et al. Myeloid-derived suppressor cell mitochondrial fitness governs chemotherapeutic efficacy in hematologic malignancies. Nat. Commun. 15, 2803 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu, Q. et al. Multiple cancer cell types release LIF and Gal3 to hijack neural signals. Cell Res. 34, 345–354 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Qiao, G. et al. β-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol. Immunother. 68, 11–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Qiao, G. et al. Chronic adrenergic stress contributes to metabolic dysfunction and an exhausted phenotype in T cells in the tumor microenvironment. Cancer Immunol. Res. 9, 651–664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bucsek, M. J. et al. β-Adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res. 77, 5639–5651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Devi, S. et al. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity 54, 1219–1230.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal. Transduct. Target. Ther. 8, 70 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kokolus, K. M. et al. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology 7, e1405205 (2018).

    Article  PubMed  Google Scholar 

  112. Gupta, S. et al. Navigating the blurred path of mixed neuro-immune signaling. J. Allergy Clin. Immunol. 153, 924–938 (2024).

    Article  CAS  PubMed  Google Scholar 

  113. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fujii, T. et al. Physiological functions of the cholinergic system in immune cells. J. Pharmacol. Sci. 134, 1–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Loeza-Alcocer, E., McPherson, T. P. & Gold, M. S. Peripheral GABA receptors regulate colonic afferent excitability and visceral nociception. J. Physiol. 597, 3425–3439 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Schneider, M. A. et al. Attenuation of peripheral serotonin inhibits tumor growth and enhances immune checkpoint blockade therapy in murine tumor models. Sci. Transl. Med. 13, eabc8188 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Chen, Y. et al. Dopamine signaling promotes tissue-resident memory differentiation of CD8+ T cells and antitumor immunity. Cancer Res. 82, 3130–3142 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Wu, Y. et al. Dopamine uses the DRD5–ARRB2–PP2A signaling axis to block the TRAF6-mediated NF-κB pathway and suppress systemic inflammation. Mol. Cell 78, 42–56.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Martyn, G. V., Shurin, G. V., Keskinov, A. A., Bunimovich, Y. L. & Shurin, M. R. Schwann cells shape the neuro-immune environs and control cancer progression. Cancer Immunol. Immunother. 68, 1819–1829 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rangel‐Sosa, M. M., Mann, F. & Chauvet, S. Pancreatic Schwann cell reprogramming supports cancer‐associated neuronal remodeling. Glia 72, 1840–1861 (2024).

    Article  PubMed  Google Scholar 

  122. Kruglov, O. et al. Melanoma-associated repair-like Schwann cells suppress anti-tumor T-cells via 12/15-LOX/COX2-associated eicosanoid production. Oncoimmunology 12, 2192098 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang, S., Chen, J., Cheng, F. & Zheng, F. The emerging role of Schwann cells in the tumor immune microenvironment and its potential clinical application. Int. J. Mol. Sci. 25, 13722 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shurin, M. R., Wheeler, S. E., Shurin, G. V., Zhong, H. & Zhou, Y. Schwann cells in the normal and pathological lung microenvironment. Front. Mol. Biosci. 11, 1365760 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Berner, J. et al. Human repair‐related Schwann cells adopt functions of antigen‐presenting cells in vitro. Glia 70, 2361–2377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xue, M. et al. Schwann cells regulate tumor cells and cancer-associated fibroblasts in the pancreatic ductal adenocarcinoma microenvironment. Nat. Commun. 14, 4600 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Duarte Mendes, A. et al. β-Adrenergic blockade in advanced non-small cell lung cancer patients receiving immunotherapy: a multicentric study. Cureus 16, e52194 (2024).

    PubMed  PubMed Central  Google Scholar 

  128. Gandhi, S. et al. Phase I clinical trial of combination propranolol and pembrolizumab in locally advanced and metastatic melanoma: safety, tolerability, and preliminary evidence of antitumor activity. Clin. Cancer Res. 27, 87–95 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Mellgard, G. et al. Effect of concurrent β-blocker use in patients receiving immune checkpoint inhibitors for advanced solid tumors. J. Cancer Res. Clin. Oncol. 149, 2833–2841 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Oh, M. S. et al. The impact of β blockers on survival outcomes in patients with non-small-cell lung cancer treated with immune checkpoint inhibitors. Clin. Lung Cancer 22, e57–e62 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Cortellini, A. et al. Differential influence of antibiotic therapy and other medications on oncological outcomes of patients with non-small cell lung cancer treated with first-line pembrolizumab versus cytotoxic chemotherapy. J. Immunother. Cancer 9, e002421 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yan, X. et al. Novel evidence for the prognostic impact of β-blockers in solid cancer patients receiving immune checkpoint inhibitors. Int. Immunopharmacol. 113, 109383 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Kennedy, O. J. & Neary, M. T. Brief communication on the impact of β-blockers on outcomes in patients receiving cancer immunotherapy. J. Immunother. 45, 303–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Zhang, Y. et al. The effect of concomitant use of statins, NSAIDs, low-dose aspirin, metformin and β-blockers on outcomes in patients receiving immune checkpoint inhibitors: a systematic review and meta-analysis. Oncoimmunology 10, 1957605 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gandhi, S. et al. Impact of concomitant medication use and immune-related adverse events on response to immune checkpoint inhibitors. Immunotherapy 12, 141–149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wu, Y. L. et al. Outcomes of β blocker use in advanced hepatocellular carcinoma treated with immune checkpoint inhibitors. Front. Oncol. 13, 1128569 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Oren, O., Yang, E. H., Molina, J. R., Bailey, K. & Kopecky, S. β-Blocker use is associated with increased all-cause mortality in lung cancer patients receiving immune checkpoint inhibitors. J. Am. Coll. Cardiol. 75, 3519 (2020).

    Article  Google Scholar 

  138. Chen, H. Y. et al. β-Blocker use is associated with worse relapse-free survival in patients with head and neck cancer. JCO Precis. Oncol. 7, e2200490 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Scheff, N. N. et al. Pretreatment pain predicts perineural invasion in patients with head and neck squamous cell carcinoma. Support. Care Cancer 31, 405 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Yaniv, D., Mattson, B., Talbot, S., Gleber-Netto, F. O. & Amit, M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat. Rev. Drug Discov. 23, 780–796 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Guillot, J. et al. Sympathetic axonal sprouting induces changes in macrophage populations and protects against pancreatic cancer. Nat. Commun. 13, 1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Goswami, P., Ives, A. M., Abbott, A. R. N. & Bertke, A. S. Stress hormones epinephrine and corticosterone selectively reactivate HSV-1 and HSV-2 in sympathetic and sensory neurons. Viruses 14, 1115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sloan, E. K., Tarara, R. P., Capitanio, J. P. & Cole, S. W. Enhanced replication of simian immunodeficiency virus adjacent to catecholaminergic varicosities in primate lymph nodes. J. Virol. 80, 4326–4335 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sloan, E. K. et al. Social stress enhances sympathetic innervation of primate lymph nodes: mechanisms and implications for viral pathogenesis. J. Neurosci. 27, 8857–8865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Brabenec, L., Gupta, S., Eichwald, T., Rafei, M. & Talbot, S. Decoding the neuroimmune axis in the atopic march: mechanisms and implications. Curr. Opin. Immunol. 91, 102507 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. McNeil, B. D. et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 237–241 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Serhan, N. et al. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat. Immunol. 20, 1435–1443 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Green, D. P., Limjunyawong, N., Gour, N., Pundir, P. & Dong, X. A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron 101, 412–420.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Caceres, A. I. et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc. Natl Acad. Sci. USA 106, 9099–9104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bautista, D. M., Pellegrino, M. & Tsunozaki, M. TRPA1: a gatekeeper for inflammation. Annu. Rev. Physiol. 75, 181–200 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Dunzendorfer, S., Meierhofer, C. & Wiedermann, C. J. Signaling in neuropeptide-induced migration of human eosinophils. J. Leukoc. Biol. 64, 828–834 (1998).

    Article  CAS  PubMed  Google Scholar 

  152. Talbot, S. et al. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87, 341–354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rochlitzer, S. et al. The neuropeptide calcitonin gene-related peptide affects allergic airway inflammation by modulating dendritic cell function. Clin. Exp. Allergy 41, 1609–1621 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Li, M. et al. Deficiency of RAMP1 attenuates antigen-induced airway hyperresponsiveness in mice. PLoS One 9, e102356 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Foster, S. L., Seehus, C. R., Woolf, C. J. & Talbot, S. Sense and immunity: context-dependent neuro-immune interplay. Front. Immunol. 8, 1463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yu, J. W. et al. Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS One 13, e0206223 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Olive, K. P. & Politi, K. Translational therapeutics in genetically engineered mouse models of cancer. Cold Spring Harb. Protoc. 2014, 131–143 (2014).

    Article  PubMed  Google Scholar 

  159. Liu, Y. et al. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal. Transduct. Target. Ther. 8, 160 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Perrin, P., Charroin, P. & Durand, L. Bladder tumors treated with radical cystectomy. Results of 78 cases [French]. J. Urol. 89, 243–246 (1983).

    CAS  Google Scholar 

  161. Chang, R. B. Optogenetic control of the peripheral nervous system. Cold Spring Harb. Perspect. Med. 9, a034397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kang, H. J. et al. Structure-guided design of a peripherally restricted chemogenetic system. Cell 187, 7433–7449.e20 (2024).

    Article  CAS  PubMed  Google Scholar 

  163. Iyer, S. M. et al. Optogenetic and chemogenetic strategies for sustained inhibition of pain. Sci. Rep. 6, 30570 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Saleeba, C., Dempsey, B., Le, S., Goodchild, A. & McMullan, S. A student’s guide to neural circuit tracing. Front. Neurosci. 13, 897 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Thiel, V. et al. Characterization of single neurons reprogrammed by pancreatic cancer. Nature 640, 1042–1051 (2025). This work uses neuronal tracing and single-cell RNA-sequencing in combination to show how tumour-innervating neurons are reprogrammed by PDAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Binshtok, A. M., Bean, B. P. & Woolf, C. J. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449, 607–610 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Talbot, S. et al. Vagal sensory neurons drive mucous cell metaplasia. J. Allergy Clin. Immunol. 145, 1693–1696.e4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Roversi, K. et al. Nanophotonics enable targeted photothermal silencing of nociceptor neurons. Small 18, e2103364 (2022).

    Article  PubMed  Google Scholar 

  169. McDougall, J. J. & O’Brien, M. S. Analgesic potential of voltage gated sodium channel modulators for the management of pain. Curr. Opin. Pharmacol. 75, 102433 (2024).

    Article  CAS  PubMed  Google Scholar 

  170. Sapio, M. R. et al. Pain control through selective chemo-axotomy of centrally projecting TRPV1+ sensory neurons. J. Clin. Invest. 128, 1657–1670 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Clyburn, C., Andresen, M. C., Ingram, S. L. & Habecker, B. A. Untangling peripheral sympathetic neurocircuits. Front. Cardiovasc. Med. 9, 842656 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kingwell, K. NaV1.8 inhibitor poised to provide opioid-free pain relief. Nat. Rev. Drug. Discov. 24, 3–5 (2025).

    Article  CAS  PubMed  Google Scholar 

  173. Haykin, H. & Rolls, A. The neuroimmune response during stress: a physiological perspective. Immunity 54, 1933–1947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Alotiby, A. Immunology of stress: a review article. J. Clin. Med. 13, 6394 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Freier, E. et al. Decrease of CD4+FOXP3+ T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology 35, 663–673 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Jürgens, M. et al. Chronic stimulation desensitizes β2‐adrenergic receptor responses in natural killer cells. Eur. J. Immunol. 54, e2451299 (2024).

    Article  PubMed  Google Scholar 

  177. Jean-Charles, P.-Y., Kaur, S. & Shenoy, S. K. G protein-coupled receptor signaling through β-arrestin-dependent mechanisms. J. Cardiovasc. Pharmacol. 70, 142–158 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhang, M. et al. G protein-coupled receptors (GPCRs): advances in structures, mechanisms and drug discovery. Signal. Transduct. Target. Ther. 9, 88 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wei, X. et al. Myeloid β-arrestin 2 depletion attenuates metabolic dysfunction-associated steatohepatitis via the metabolic reprogramming of macrophages. Cell Metab. 36, 2281–2297.e7 (2024).

    Article  CAS  PubMed  Google Scholar 

  180. Qin, R. et al. β-Arrestin 1 promotes the progression of chronic myeloid leukaemia by regulating BCR/ABL H4 acetylation. Br. J. Cancer 111, 568–576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fereshteh, M. et al. β-Arrestin 2 mediates the initiation and progression of myeloid leukemia. Proc. Natl Acad. Sci. USA 109, 12532–12537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.A.’s work is supported by the National Institutes of Health (NIH) (National Cancer Institute (NCI), R37CA242006-01A1), the Stiefel Family Discovery Award, an Institutional Research Grant and the Disruptive Science Moonshot Award at MD Anderson Cancer Center (MDACC). A.C.’s work is supported by a National Health and Medical Research Council (NHMRC) grant (2020851). A.R. is supported by a scholarship from Fonds de recherche du Québec (FRQS) (347343). T.E. is supported by the Brain Canada Rising Star Program, funded by the Henry and Berenice Kaufmann Foundation. K.O.D. is supported by the Swiss National Science Foundation (TMSGI3_218400, PZ00P3_202029) and the NCI (R21CA282866). P.D.V.’s work is funded by the National Institute of Dental and Craniofacial Research (NIDCR) (5R01DE032712) and the National Institute of General Medical Sciences (NIGMS) (P30GM145398). N.N.S.’s work is supported by the Rita Allen Foundation Pain Award (2021) and the NIH/NIDCR (R01DE030892, R01DE033473, R21DE034106). S.T.’s work is supported by the Canadian Institutes of Health Research (CIHR) (193741, 407016, 461274, 461275), the Canada Foundation for Innovation (44135), the Canadian Cancer Society Emerging Scholar Research Grant (708096), the Knut and Alice Wallenberg Foundation (KAW 2021.0141, KAW 2022.0327), the Swedish Research Council (2022-01661), the Natural Sciences and Engineering Research Council of Canada (RGPIN-2019-06824) and the NIH/NIDCR (R01DE032712).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed to discussions on its content and drafted the manuscript under the guidance of S.T., N.N.S., and M.A. All authors reviewed and approved the final version before submission.

Corresponding authors

Correspondence to Moran Amit, Nicole N. Scheff or Sebastien Talbot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Elizabeth Repasky who co-reviewed with Jee Eun Choi, Felipe A. Pinho-Ribeiro who co-reviewed with Tiago H. Zaninelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

α7-Nicotinic acetylcholine receptors

(α7-nAChRs). Cholinergic receptors with high calcium permeability, strongly implicated in cognitive function, inflammation modulation and neuroprotection.

β-Adrenergic receptors

(β-ARs). Protein-coupled receptors responsive to adrenaline and norepinephrine, regulating cardiac output, smooth muscle tone and metabolism.

Acid-sensing ion channels

(ASICS). Proton-gated ion channels activated by acidic environments, contributing to pain detection and modulating neuronal excitability.

Chemogenetic tools

A technique merging engineered receptors with selective ligands to modulate neuronal activity, enabling manipulation of signalling.

Cranial nerves

Twelve nerves arising from the brain, controlling motor, sensory and parasympathetic functions in head and neck.

Dorsal root ganglia

Clusters of sensory neuron bodies in spinal nerves, transmitting signals into the central nervous system.

Enterochromaffin cells

Specialized cells within the gastrointestinal tract secreting serotonin, influencing gut motility, secretion and nervous signalling.

Fight-or-flight responses

Physiological reactions triggered by threats, mediated by sympathetic activity, increasing alertness, energy and resource mobilization.

Group 2 innate lymphoid cell

An immune cell producing type 2 cytokines, such as interleukin-5 (IL-5) and IL-13, orchestrating responses against parasites, regulating tissue repair and homeostasis.

Humanized mice

Genetically modified mice expressing human genes, cells or tissues, for disease modelling and testing in vivo.

Intermediolateral cell column

Lateral grey horn region of the spinal cord housing preganglionic sympathetic neurons for autonomic regulation.

Muscarinic receptors

G-protein-coupled acetylcholine receptors modulate parasympathetic functions, including secretion, the heart rate and smooth muscle contraction.

Muscularis macrophages

Specialized macrophages residing in the smooth muscle layer of the gastrointestinal tract that have crucial roles in modulating gut motility, maintaining tissue homeostasis and coordinating immune responses.

Neurogenesis

Process generating new neurons from progenitor cells, primarily during development and in adult brain regions.

Neuro-immune reflex

Reflexive interplay between neurons and immune cells, rapidly modulating inflammation and sustaining homeostasis through coordinated signals.

Neurotrophins

Proteins supporting neuron survival, differentiation and plasticity, including nerve growth factors (NGFs) and brain-derived neurotrophic factors (BDNFs).

Nodose and jugular ganglia

Sensory ganglia of the vagus nerve, housing afferent neurons regulating cardiovascular, respiratory and gastrointestinal reflexes.

Optogenetic tools

A method using light-sensitive proteins to control neuronal activity with spatial and temporal resolution in vivo.

Parasympathetic nervous system

(PNS). Division of the autonomic nervous system conserving energy, slowing the heart rate and promoting glandular activities.

Paraventricular nucleus

A key hypothalamic region composed of distinct neuronal populations that integrate neural and hormonal signals to regulate autonomic functions, stress responses, fluid balance and energy homeostasis.

Paravertebral ganglia

Sympathetic ganglia adjacent to the spinal column, transmitting signals for autonomic regulation of body functions.

Perineural invasion

Cancer cells invading nerves, facilitating tumour spread, associated with pain, recurrence and poor outcomes.

PIEZO channels

Mechanically activated ion channels sensing pressure, touch and stretch, crucial for mechanotransduction in various tissues.

Prevertebral ganglia

Sympathetic ganglia located anterior to the vertebral column, regulating innervation of abdominal and pelvic viscera.

Purinergic receptors

Receptors activated by extracellular nucleotides such as ATP, mediating diverse nociception, inflammation and cell death signalling.

Rest-and-digest activities

Parasympathetic-driven processes conserving energy, supporting digestion, glandular secretions and facilitating overall recovery from sympathetic activation.

Restraint stress

Stressful condition induced by restricting movement, triggering physiological and psychological responses, including elevated corticosterone levels.

Second-order neuronal synapses

Central nervous system synapses receiving input from afferent neurons, relaying signals onwards to a higher centre.

Splanchnic nerves

Visceral nerves carrying sympathetic and parasympathetic fibres, innervating abdominal and pelvic organs, modulating autonomic function.

Sympathetic nervous system

(SNS). Division of the autonomic nervous system promoting fight-or-flight responses, increasing the heart rate and energy mobilization.

Tertiary lymphoid structures

(TLS). Ectopic clusters of immune cells in non-lymphoid tissues, supporting immunity and antigen presentation during inflammation.

Transient receptor potential (TRP) channels

Cation-permeable ion channels responsive to temperature, chemical and mechanical stimuli, for sensory transduction across modalities.

Trigeminal ganglia

Sensory ganglia of the trigeminal nerve, conveying facial sensation, controlling motor functions for mastication and biting.

Type 17 immune responses

Immunity mediated by interleukin-17 (IL-17)-producing cells, important for defence against extracellular pathogens and contributing to inflammation.

Ventral roots

Neural outflows from the spinal cord, carrying efferent signals to skeletal muscles and autonomic ganglia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amit, M., Eichwald, T., Roger, A. et al. Neuro-immune cross-talk in cancer. Nat Rev Cancer (2025). https://doi.org/10.1038/s41568-025-00831-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41568-025-00831-w

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer