Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GPCR drug discovery: new agents, targets and indications

Abstract

G protein-coupled receptors (GPCRs) form one of the largest drug target families, reflecting their involvement in numerous pathophysiological processes. In this Review, we analyse drug discovery trends for the GPCR superfamily, covering compounds, targets and indications that have reached regulatory approval or that are being investigated in clinical trials. We find that there are 516 approved drugs targeting GPCRs, making up 36% of all approved drugs. These drugs act on 121 GPCR targets, one-third of all non-sensory GPCRs. Furthermore, 337 agents targeting 133 GPCRs, including 30 novel targets, are being investigated in clinical trials. Notably, 165 of these agents are approved drugs being tested for additional indications and novel agents are increasingly allosteric modulators and biologics. Remarkably, diabetes and obesity drugs targeting GPCRs had sales of nearly US $30 billion in 2023 and the numbers of clinical trials for GPCR modulators in the metabolic diseases, oncology and immunology areas are increasing strongly. Finally, we highlight the potential of untapped target–disease associations and pathway-biased signalling. Overall, this Review provides an up-to-date reference for the drugged and potentially druggable GPCRome to inform future GPCR drug discovery and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of GPCR drug discovery.
Fig. 2: GPCRs as targets of approved drugs and drug candidates and their therapeutic associations.
Fig. 3: Top compounds and targets across the marketed, repurposed and novel spaces.
Fig. 4: Trends in GPCR-targeted agents and drugs.
Fig. 5: Trends in indications of GPCR-targeted drugs.
Fig. 6: Untapped targets and their disease associations and available data.

Similar content being viewed by others

References

  1. Nordstrom, K. J., Sallman Almen, M., Edstam, M. M., Fredriksson, R. & Schioth, H. B. Independent HHsearch, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol. Biol. Evol. 28, 2471–2480 (2011).

    Article  PubMed  Google Scholar 

  2. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schioth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug. Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug. Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Wicks, C., Hudlicky, T. & Rinner, U. Morphine alkaloids: history, biology, and synthesis. Alkaloids Chem. Biol. 86, 145–342 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Holmstedt, B., Wassén, S. H. & Schultes, R. E. Jaborandi: an interdisciplinary appraisal. J. Ethnopharmacol. 1, 3–21 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Ahlquist, R. P. A study of the adrenotropic receptors. Am. J. Physiol. 153, 586–600 (1948).

    Article  CAS  PubMed  Google Scholar 

  7. Hargrave, P. A. et al. The structure of bovine rhodopsin. Biophys. Struct. Mech. 9, 235–244 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Dixon, R. A. et al. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Dohlman, H. G., Caron, M. G. & Lefkowitz, R. J. A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26, 2657–2664 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, H. H. G-protein-coupled receptors and their (bio)chemical significance win 2012 Nobel Prize in Chemistry. Biomed. J. 36, 118–124 (2013).

    Article  PubMed  Google Scholar 

  11. Roth, B. L. & Chuang, D. M. Multiple mechanisms of serotonergic signal transduction. Life Sci. 41, 1051–1064 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Fisher, A. et al. Selective signaling via unique M1 muscarinic agonists. Ann. N. Y. Acad. Sci. 695, 300–303 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Christopoulos, A. et al. International Union of Basic and Clinical Pharmacology. XC. Multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol. Rev. 66, 918–947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kenakin, T. Biased receptor signaling in drug discovery. Pharmacol. Rev. 71, 267–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug. Discov. 17, 243–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rasmussen, S. G. F. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Congreve, M., de Graaf, C., Swain, N. A. & Tate, C. G. Impact of GPCR structures on drug discovery. Cell 181, 81–91 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Lopez-Balastegui, M. et al. Relevance of G protein-coupled receptor (GPCR) dynamics for receptor activation, signalling bias and allosteric modulation. Br J Pharmacol. https://doi.org/10.1111/bph.16495 (2024).

  21. Caroli, J. et al. An online GPCR drug discovery resource. Preprint at bioRxiv https://doi.org/10.1101/2025.01.11.632537 (2025).

  22. Tobin, A. B. A golden age of muscarinic acetylcholine receptor modulation in neurological diseases. Nat. Rev. Drug. Discov. 23, 743–758 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Kingwell, K. FDA approves first schizophrenia drug with new mechanism of action since 1950s. Nat. Rev. Drug Discov. 23, 803 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Bassilana, F., Nash, M. & Ludwig, M.-G. Adhesion G protein-coupled receptors: opportunities for drug discovery. Nat. Rev. Drug. Discov. 18, 869–884 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Alhiary, R. et al. Patents and regulatory exclusivities on GLP-1 receptor agonists. JAMA 330, 650–657 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug. Discov. 3, 353–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, Q. et al. Weight loss blockbuster development: a role for unimolecular polypharmacology. Annu. Rev. Pharmacol. Toxicol. https://doi.org/10.1146/annurev-pharmtox-061324-011832 (2024).

  28. Su, M. et al. Structural basis of agonist specificity of ɑ1A-adrenergic receptor. Nat. Commun. 14, 4819 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan, L. et al. Haloperidol bound D2 dopamine receptor structure inspired the discovery of subtype selective ligands. Nat. Commun. 11, 1074 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kruse, A. C. et al. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Mol. Pharmacol. 84, 528–540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simon, I. A. et al. Ligand selectivity hotspots in serotonin GPCRs. Trends Pharmacol. Sci. 44, 978–990 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Keam, S. J. Gepirone extended-release: first approval. Drugs 83, 1723–1728 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. He, J. et al. ASD2023: towards the integrating landscapes of allosteric knowledgebase. Nucleic Acids Res. 52, D376–D383 (2023).

    Article  PubMed Central  Google Scholar 

  34. Swanson, C. J. et al. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat. Rev. Drug. Discov. 4, 131–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Changeux, J. P. & Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell 166, 1084–1102 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. O’Brien, E. S. et al. A µ-opioid receptor modulator that works cooperatively with naloxone. Nature 631, 686–693 (2024).

    Article  PubMed  Google Scholar 

  37. Persechino, M., Hedderich, J. B., Kolb, P. & Hilger, D. Allosteric modulation of GPCRs: from structural insights to in silico drug discovery. Pharmacol. Ther. 237, 108242 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Cheng, L. et al. Structure, function and drug discovery of GPCR signaling. Mol. Biomed. 4, 46 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Conflitti, P. et al. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-024-01083-3 (2025).

  40. Peter, S. et al. Comparative study of allosteric GPCR binding sites and their ligandability potential. J. Chem. Inf. Model. 64, 8176–8192 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pandy-Szekeres, G. et al. GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res. 51, D395–D402 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, M. et al. G protein-coupled receptors (GPCRs): advances in structures, mechanisms and drug discovery. Signal. Transduct. Target. Ther. 9, 88 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, L., Mobbs, J. I., May, L. T., Glukhova, A. & Thal, D. M. The impact of cryo-EM on determining allosteric modulator-bound structures of G protein-coupled receptors. Curr. Opin. Struct. Biol. 79, 102560 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Thal, D. M., Glukhova, A., Sexton, P. M. & Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Hutchings, C. J., Koglin, M., Olson, W. C. & Marshall, F. H. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat. Rev. Drug. Discov. 16, 787–810 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Killion, E. A. et al. Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models. Sci. Transl. Med. 10, eaat3392 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Véniant, M. M. et al. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat. Metab. 6, 290–303 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pettus, J. et al. Glucagon receptor antagonist volagidemab in type 1 diabetes: a 12-week, randomized, double-blind, phase 2 trial. Nat. Med. 28, 2092–2099 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Salom, D., Wu, A., Liu, C. C. & Palczewski, K. The impact of nanobodies on G protein-coupled receptor structural biology and their potential as therapeutic agents. Mol. Pharmacol. 106, 155–163 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Carter, P. J. & Rajpal, A. Designing antibodies as therapeutics. Cell 185, 2789–2805 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Vasile, S. et al. Evolution of angiotensin peptides and peptidomimetics as angiotensin II receptor type 2 (AT2) receptor agonists. Biomolecules 10, 649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stępnicki, P., Kondej, M., Koszła, O., Żuk, J. & Kaczor, A. A. Multi-targeted drug design strategies for the treatment of schizophrenia. Expert. Opin. Drug. Discov. 16, 101–114 (2021).

    Article  PubMed  Google Scholar 

  53. Hughes, C. E. & Nibbs, R. J. B. A guide to chemokines and their receptors. FEBS J. 285, 2944–2971 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, H. et al. Chemokines and chemokine receptors: a new strategy for breast cancer therapy. Cancer Med. 9, 3786–3799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Braoudaki, M. et al. Chemokines and chemokine receptors in colorectal cancer; multifarious roles and clinical impact. Semin. Cancer Biol. 86, 436–449 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Ha, H., Debnath, B. & Neamati, N. Role of the CXCL8–CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7, 1543–1588 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xiong, N., Fu, Y., Hu, S., Xia, M. & Yang, J. CCR10 and its ligands in regulation of epithelial immunity and diseases. Protein Cell 3, 571–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huynh, C. et al. A multipurpose first-in-human study with the novel CXCR7 antagonist ACT-1004-1239 using CXCL12 plasma concentrations as target engagement biomarker. Clin. Pharmacol. Ther. 109, 1648–1659 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Boof, M. L. et al. Pharmacokinetics, pharmacodynamics and safety of the novel C–X–C chemokine receptor 3 antagonist ACT-777991: results from the first-in-human study in healthy adults. Br. J. Clin. Pharmacol. 90, 588–599 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Cocchi, F. et al. Identification of RANTES, MIP-1ɑ, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Fadel, H. & Temesgen, Z. Maraviroc. Drugs Today 43, 749–758, (2007).

    Article  CAS  Google Scholar 

  63. De Clercq, E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir. Chem. Chemother. 27, 2040206619829382 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Horuk, R. Chemokine receptor antagonists: overcoming developmental hurdles. Nat. Rev. Drug. Discov. 8, 23–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Sonnweber, T., Pizzini, A., Nairz, M., Weiss, G. & Tancevski, I. Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int. J. Mol. Sci. 19, 3285 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jore, M. M. et al. Structural basis for therapeutic inhibition of complement C5. Nat. Struct. Mol. Biol. 23, 378–386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Roversi, P. et al. Bifunctional lipocalin ameliorates murine immune complex-induced acute lung injury. J. Biol. Chem. 288, 18789–18802 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sadik, C. D. et al. Evaluation of nomacopan for treatment of bullous pemphigoid: a phase 2a nonrandomized controlled trial. JAMA Dermatol. 158, 641–649 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Edinoff, A. N. et al. Cebranopadol for the treatment of chronic pain. Curr. Pain. Headache Rep. 27, 615–622 (2023).

    Article  PubMed  Google Scholar 

  70. Davenport, A. P. et al. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev. 65, 967–986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Laun, A. S., Shrader, S. H., Brown, K. J. & Song, Z. H. GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol. Acta Pharmacol. Sin. 40, 300–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Ali, S., Wang, P., Murphy, R. E., Allen, J. A. & Zhou, J. Orphan GPR52 as an emerging neurotherapeutic target. Drug. Discov. Today 29, 103922 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gao, W. S. et al. DOK3 is involved in microglial cell activation in neuropathic pain by interacting with GPR84. Aging 13, 389–410 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brice, N. L. et al. Development of CVN424: a selective and novel GPR6 inverse agonist effective in models of Parkinson disease. J. Pharmacol. Exp. Ther. 377, 407–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Gembardt, F., Grajewski, S., Vahl, M., Schultheiss, H. P. & Walther, T. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol. Cell Biochem. 319, 115–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Santos, R. A. S. et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin–angiotensin system: focus on angiotensin-(1–7). Physiol. Rev. 98, 505–553 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Self, W. H. et al. Renin–angiotensin system modulation with synthetic angiotensin (1–7) and angiotensin II type 1 receptor-biased ligand in adults with COVID-19: two randomized clinical trials. JAMA 329, 1170–1182 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lin, X. et al. Structural basis of ligand recognition and self-activation of orphan GPR52. Nature 579, 152–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Fan, Y. et al. Allosteric coupling between G-protein binding and extracellular ligand binding sites in GPR52 revealed by 19F-NMR and cryo-electron microscopy. MedComm 4, e260 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu, H. et al. Structural insights into ligand recognition and activation of the medium-chain fatty acid-sensing receptor GPR84. Nat. Commun. 14, 3271 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, F. et al. Structure, function and pharmacology of human itch receptor complexes. Nature 600, 164–169 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Cao, C. et al. Structure, function and pharmacology of human itch GPCRs. Nature 600, 170–175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug. Discov. 18, 41–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Vokinger, K. N. et al. Therapeutic value of first versus supplemental indications of drugs in US and Europe (2011–20): retrospective cohort study. BMJ 382, e074166 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ghazy, A. A. et al. Role of oxytocin in different neuropsychiatric, neurodegenerative, and neurodevelopmental disorders. Rev. Physiol. Biochem. Pharmacol. 186, 95–134 (2023).

    Article  PubMed  Google Scholar 

  86. Black, J. W., Crowther, A. F., Shanks, R. G., Smith, L. H. & Dornhorst, A. C. A new adrenergic β-receptor antagonist. Lancet 1, 1080–1081 (1964).

    Article  CAS  PubMed  Google Scholar 

  87. Léauté-Labrèze, C. et al. Propranolol for severe hemangiomas of infancy. N. Engl. J. Med. 358, 2649–2651 (2008).

    Article  PubMed  Google Scholar 

  88. Chung, E. K. Wolff–Parkinson–White syndrome—current views. Am. J. Med. 62, 252–266 (1977).

    Article  CAS  PubMed  Google Scholar 

  89. Lin, Y. et al. β-Adrenergic receptor blocker propranolol triggers anti-tumor immunity and enhances irinotecan therapy in mice colorectal cancer. Eur. J. Pharmacol. 949, 175718 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Shepard, M. J. et al. Repurposing propranolol as an antitumor agent in von Hippel–Lindau disease. J. Neurosurg. 131, 1106–1114 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sinichi, F. et al. Pentoxifylline as adjunctive therapy in cognitive deficits and symptoms of schizophrenia: a randomized double-blind placebo-controlled clinical trial. J. Psychopharmacol. 37, 1003–1010 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Srivastava, A. B. & Gold, M. S. Naltrexone: A history and future directions. Cerebrum cer-13-18 (2018).

  93. Pitt, B., Tate, A. M., Gluck, D., Rosenson, R. S. & Goonewardena, S. N. Repurposing low-dose naltrexone for the prevention and treatment of immunothrombosis in COVID-19. Eur. Heart J. Cardiovasc. Pharmacother. 8, 402–405 (2022).

    Article  PubMed  Google Scholar 

  94. Isman, A. et al. Low-dose naltrexone and NAD+ for the treatment of patients with persistent fatigue symptoms after COVID-19. Brain Behav. Immun. Health 36, 100733 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grilo, C. M. et al. Naltrexone–bupropion and behavior therapy, alone and combined, for binge-eating disorder: randomized double-blind placebo-controlled trial. Am. J. Psychiatry 179, 927–937 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pagano, C. et al. Cannabinoids: Therapeutic use in clinical practice. Int. J. Mol. Sci. 23, 3344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Robles-Osorio, M. L. et al. Basis and design of a randomized clinical trial to evaluate the effect of levosulpiride on retinal alterations in patients with diabetic retinopathy and diabetic macular edema. Front. Endocrinol. 9, 242 (2018).

    Article  Google Scholar 

  98. Koch, M. W. et al. Repurposing domperidone in secondary progressive multiple sclerosis: a Simon 2-stage phase 2 futility trial. Neurology 96, e2313–e2322 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Green, A. J. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 390, 2481–2489 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Kocot, J. et al. Clemastine fumarate accelerates accumulation of disability in progressive multiple sclerosis by enhancing pyroptosis. Preprint at medRxiv https://doi.org/10.1101/2024.04.09.24305506 (2024).

  101. Keating, G. M. Dexmedetomidine: a review of its use for sedation in the intensive care setting. Drugs 75, 1119–1130 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Miller, L. J. Prazosin for the treatment of posttraumatic stress disorder sleep disturbances. Pharmacotherapy 28, 656–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Schultz, J. L. et al. A pilot to assess target engagement of terazosin in Parkinson’s disease. Parkinsonism Relat. Disord. 94, 79–83 (2022).

    Article  PubMed  Google Scholar 

  104. Zhang, G. C. et al. β2-Adrenergic receptor agonist corrects immune thrombocytopenia by reestablishing the homeostasis of T cell differentiation. J. Thromb. Haemost. 21, 1920–1933 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Fumagalli, C., Maurizi, N., Marchionni, N. & Fornasari, D. β-Blockers: their new life from hypertension to cancer and migraine. Pharmacol. Res. 151, 104587 (2020).

    Article  CAS  PubMed  Google Scholar 

  106. Byers, P. H. et al. Diagnosis, natural history, and management in vascular Ehlers–Danlos syndrome. Am. J. Med. Genet. 175, 40–47 (2017).

    Article  PubMed  Google Scholar 

  107. Köhne, S., Hillemacher, T., Glahn, A. & Bach, P. Emerging drugs in phase II and III clinical development for the treatment of alcohol use disorder. Expert Opin. Emerg. Drugs 29, 219–232 (2024).

    Article  PubMed  Google Scholar 

  108. Smith, N. H. & Howze, E. H. Inventorying community health promotion and risk reduction services: Virginia’s approach. Health Educ. Q. 14, 403–410 (1987).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, Z. X. et al. Clinical outcomes of recommended active pharmacotherapy agents from NICE guideline for post-traumatic stress disorder: network meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 125, 110754 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Smith, T. J., Loprinzi, C. L. & Deville, C. Oxybutynin for hot flashes due to androgen deprivation in men. N. Engl. J. Med. 378, 1745–1746 (2018).

    Article  PubMed  Google Scholar 

  111. Foster, S. R. et al. Discovery of human signaling systems: pairing peptides to G protein-coupled receptors. Cell 179, 895–908.e21 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mehrotra, S., Kalyan Bg, P., Nayak, P. G., Joseph, A. & Manikkath, J. Recent progress in the oral delivery of therapeutic peptides and proteins: overview of pharmaceutical strategies to overcome absorption hurdles. Adv. Pharm. Bull. 14, 11–33 (2024).

    CAS  PubMed  Google Scholar 

  113. Jia, Y., Liu, Y., Feng, L., Sun, S. & Sun, G. Role of glucagon and its receptor in the pathogenesis of diabetes. Front. Endocrinol. 13, 928016 (2022).

    Article  Google Scholar 

  114. Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19, 201–216 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Gutgesell, R. M., Nogueiras, R., Tschöp, M. H. & Müller, T. D. Dual and triple incretin-based co-agonists: novel therapeutics for obesity and diabetes. Diabetes Ther. 15, 1069–1084 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Folli, F. et al. Mechanisms of action of incretin receptor based dual- and tri-agonists in pancreatic islets. Am. J. Physiol. Endocrinol. Metab. 325, E595–E609 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nauck, M. A. & D’Alessio, D. A. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc. Diabetol. 21, 169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Romero-Gómez, M. et al. A phase IIa active-comparator-controlled study to evaluate the efficacy and safety of efinopegdutide in patients with non-alcoholic fatty liver disease. J. Hepatol. 79, 888–897 (2023).

    Article  PubMed  Google Scholar 

  120. Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity—a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Abdelmalek, M. F. et al. A phase 2, adaptive randomized, double-blind, placebo-controlled, multicenter, 52-week study of HM15211 in patients with biopsy-confirmed non-alcoholic steatohepatitis—study design and rationale of HM-TRIA-201 study. Contemp. Clin. Trials 130, 107176 (2023).

    Article  PubMed  Google Scholar 

  122. Wang, C. et al. The orexin/receptor system: molecular mechanism and therapeutic potential for neurological diseases. Front. Mol. Neurosci. 11, 220 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Maness, E. B., Blumenthal, S. A. & Burk, J. A. Dual orexin/hypocretin receptor antagonism attenuates NMDA receptor hypofunction-induced attentional impairments in a rat model of schizophrenia. Behav. Brain Res. 450, 114497 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Glen, A. et al. Discovery and first-time disclosure of CVN766, an exquisitely selective orexin 1 receptor antagonist. Bioorg. Med. Chem. Lett. 100, 129629 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Johnson & Johnson pivotal study of seltorexant shows statistically significant and clinically meaningful improvement in depressive symptoms and sleep disturbance outcomes. Johnson & Johnson (29 May 2024); https://www.jnj.com/media-center/press-releases/johnson-johnson-pivotal-study-of-seltorexant-shows-statistically-significant-and-clinically-meaningful-improvement-in-depressive-symptoms-and-sleep-disturbance-outcomes.

  126. Harrison, J. E., Weber, S., Jakob, R. & Chute, C. G. ICD-11: an International Classification of Diseases for the twenty-first century. BMC Med. Inform. Decis. Mak. 21, 206 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Li, Y., Li, B., Chen, W. D. & Wang, Y. D. Role of G-protein coupled receptors in cardiovascular diseases. Front. Cardiovasc. Med. 10, 1130312 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wendell, S. G., Fan, H. & Zhang, C. G protein-coupled receptors in asthma therapy: pharmacology and drug action. Pharmacol. Rev. 72, 1–49 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wong, T. S. et al. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal. Transduct. Target. Ther. 8, 177 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Aronson, J. K. & Green, A. R. Me-too pharmaceutical products: history, definitions, examples, and relevance to drug shortages and essential medicines lists. Br. J. Clin. Pharmacol. 86, 2114–2122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  132. Paul, S. M. & Potter, W. Z. Finding new and better treatments for psychiatric disorders. Neuropsychopharmacology 49, 3–9 (2024).

    Article  PubMed  Google Scholar 

  133. Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).

    Article  PubMed  Google Scholar 

  134. Jones-Tabah, J. Targeting G protein-coupled receptors in the treatment of Parkinson’s disease. J. Mol. Biol. 435, 167927 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Larsen, A. T., Sonne, N., Andreassen, K. V., Karsdal, M. A. & Henriksen, K. The calcitonin receptor plays a major role in glucose regulation as a function of dual amylin and calcitonin receptor agonist therapy. J. Pharmacol. Exp. Ther. 374, 74–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Dhillon, S. Semaglutide: first global approval. Drugs 78, 275–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Syed, Y. Y. Tirzepatide: first approval. Drugs 82, 1213–1220 (2022).

    Article  CAS  PubMed  Google Scholar 

  138. Hyland, M. H. & Cohen, J. A. Fingolimod. Neurol. Clin. Pract. 1, 61–65 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lamb, Y. N. Ozanimod: first approval. Drugs 80, 841–848 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Al-Salama, Z. T. Siponimod: first global approval. Drugs 79, 1009–1015 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Markham, A. Ponesimod: first approval. Drugs 81, 957–962 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Adachi, K. & Chiba, K. FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect. Medicin. Chem. 1, 11–23 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kovarik, J. M. et al. Multiple-dose FTY720: tolerability, pharmacokinetics, and lymphocyte responses in healthy subjects. J. Clin. Pharmacol. 44, 532–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Scott, F. L. et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br. J. Pharmacol. 173, 1778–1792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Olsson, T. et al. Oral ponesimod in relapsing–remitting multiple sclerosis: a randomised phase II trial. J. Neurol. Neurosurg. Psychiatry 85, 1198–1208 (2014).

    Article  PubMed  Google Scholar 

  146. Scott, L. J. Siponimod: a review in secondary progressive multiple sclerosis. CNS Drugs 34, 1191–1200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. McGinley, M. P. & Cohen, J. A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 398, 1184–1194 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Lee, A. Avacopan: first approval. Drugs 82, 79–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Young, D., Waitches, G., Birchmeier, C., Fasano, O. & Wigler, M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45, 711–719 (1986).

    Article  CAS  PubMed  Google Scholar 

  150. Attwood, M. M., Fabbro, D., Sokolov, A. V., Knapp, S. & Schiöth, H. B. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat. Rev. Drug. Discov. 20, 839–861 (2021).

    Article  CAS  PubMed  Google Scholar 

  151. Hoy, S. M. Glasdegib: first global approval. Drugs 79, 207–213 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Dubey, A. K., Dubey, S., Handu, S. S. & Qazi, M. A. Vismodegib: the first drug approved for advanced and metastatic basal cell carcinoma. J. Postgrad. Med. 59, 48–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Burness, C. B. Sonidegib: first global approval. Drugs 75, 1559–1566 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  PubMed  Google Scholar 

  155. Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Griffith, J. W., Sokol, C. L. & Luster, A. D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32, 659–702 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Mollica Poeta, V., Massara, M., Capucetti, A. & Bonecchi, R. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front. Immunol. 10, 379 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ureshino, H., Kamachi, K. & Kimura, S. Mogamulizumab for the treatment of adult T-cell leukemia/lymphoma. Clin. Lymphoma Myeloma Leuk. 19, 326–331 (2019).

    Article  PubMed  Google Scholar 

  159. Rodriguez-Otero, P. et al. GPRC5D as a novel target for the treatment of multiple myeloma: a narrative review. Blood Cancer J. 14, 24 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Xiang, Y. et al. The G-protein coupled chemoattractant receptor FPR2 promotes malignant phenotype of human colon cancer cells. Am. J. Cancer Res. 6, 2599–2610 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang, M. et al. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the β-catenin pathway. Proc. Natl Acad. Sci. USA 102, 6027–6032 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Smith, J. P., Fonkoua, L. K. & Moody, T. W. The role of gastrin and CCK receptors in pancreatic cancer and other malignancies. Int. J. Biol. Sci. 12, 283–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Pérez-Gómez, E. et al. The orphan receptor GPR55 drives skin carcinogenesis and is upregulated in human squamous cell carcinomas. Oncogene 32, 2534–2542 (2013).

    Article  PubMed  Google Scholar 

  164. Xu, L. et al. GPR56 plays varying roles in endogenous cancer progression. Clin. Exp. Metastasis 27, 241–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Arora, C. et al. The landscape of cancer-rewired GPCR signaling axes. Cell Genom. 4, 100557 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Arang, N. & Gutkind, J. S. G protein-coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett. 594, 4201–4232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lee, A. Fezolinetant: first approval. Drugs 83, 1137–1141 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Hoy, S. M. Mavorixafor: first approval. Drugs 84, 969–975 (2024).

    Article  PubMed  Google Scholar 

  169. Paul, S. M., Yohn, S. E., Brannan, S. K., Neugebauer, N. M. & Breier, A. Muscarinic receptor activators as novel treatments for schizophrenia. Biol. psychiatry 96, 627–637 (2024).

    Article  CAS  PubMed  Google Scholar 

  170. Syed, Y. Y. Sparsentan: first approval. Drugs 83, 563–568 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Deeks, E. D. Difelikefalin: first approval. Drugs 81, 1937–1944 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Mittra, E. S. Neuroendocrine tumor therapy: 177Lu-dotatate. AJR Am. J. Roentgenol. 211, 278–285 (2018).

    Article  PubMed  Google Scholar 

  173. Sanli, Y. et al. Neuroendocrine tumor diagnosis and management: 68Ga-dotatate PET/CT. AJR Am. J. Roentgenol. 211, 267–277 (2018).

    Article  PubMed  Google Scholar 

  174. Alrumaihi, F. The multi-functional roles of CCR7 in human immunology and as a promising therapeutic target for cancer therapeutics. Front. Mol. Biosci. 9, 834149 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kowalski, T. J. & Sasikumar, T. Melanin-concentrating hormone receptor-1 antagonists as antiobesity therapeutics: current status. Biodrugs 21, 311–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Holanda, V. A. D. et al. Neuropeptide S receptor as an innovative therapeutic target for Parkinson disease. Pharmaceuticals 14, 775 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Miller, L. J. & Desai, A. J. Metabolic actions of the type 1 cholecystokinin receptor: its potential as a therapeutic target. Trends Endocrinol. Metab. 27, 609–619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Xu, F. et al. Identification and target-pathway deconvolution of FFA4 agonists with anti-diabetic activity from Arnebia euchroma (Royle) Johnst. Pharmacol. Res. 163, 105173 (2021).

    Article  CAS  PubMed  Google Scholar 

  179. Ochoa, D. et al. The next-generation Open Targets platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).

    Article  PubMed  Google Scholar 

  180. Caroli, J. et al. A community biased signaling atlas. Nat. Chem. Biol. 19, 531–535 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Scharf, M. M. et al. The dark sides of the GPCR tree—research progress on understudied GPCRs. Br. J. Pharmacol. https://doi.org/10.1111/bph.16325 (2024).

  182. Hamann, J. et al. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol. Rev. 67, 338–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gad, A. A. & Balenga, N. The emerging role of adhesion GPCRs in cancer. ACS Pharmacol. Transl. Sci. 3, 29–42 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Vizurraga, A., Adhikari, R., Yeung, J., Yu, M. & Tall, G. G. Mechanisms of adhesion G protein-coupled receptor activation. J. Biol. Chem. 295, 14065–14083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Krumm, B. & Roth, B. L. A structural understanding of class B GPCR selectivity and activation revealed. Structure 28, 277–279 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Stoveken, H. M. et al. Dihydromunduletone is a small-molecule selective adhesion G protein-coupled receptor antagonist. Mol. Pharmacol. 90, 214–224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gupte, J. et al. Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett. 586, 1214–1219 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Seufert, F., Chung, Y. K., Hildebrand, P. W. & Langenhan, T. 7TM ___domain structures of adhesion GPCRs: what’s new and what’s missing? Trends Biochem. Sci. 48, 726–739 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Hayat, R., Manzoor, M. & Hussain, A. Wnt signaling pathway: a comprehensive review. Cell Biol. Int. 46, 863–877 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Kozielewicz, P. et al. Structural insight into small molecule action on Frizzleds. Nat. Commun. 11, 414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Riccio, G. et al. A negative allosteric modulator of WNT receptor Frizzled 4 switches into an allosteric agonist. Biochemistry 57, 839–851 (2018).

    Article  CAS  PubMed  Google Scholar 

  192. Zhang, W., Lu, W., Ananthan, S., Suto, M. J. & Li, Y. Discovery of novel Frizzled-7 inhibitors by targeting the receptor’s transmembrane ___domain. Oncotarget 8, 91459–91470 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Epping-Jordan, M. P. et al. Effect of the metabotropic glutamate receptor type 5 negative allosteric modulator dipraglurant on motor and non-motor symptoms of Parkinson’s disease. Cells 12, https://doi.org/10.3390/cells12071004 (2023).

  194. Fuxe, K. & Borroto-Escuela, D. O. Basimglurant for treatment of major depressive disorder: a novel negative allosteric modulator of metabotropic glutamate receptor 5. Expert. Opin. Investig. Drugs 24, 1247–1260 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Metcalf, C. S. et al. Efficacy of mGlu2 -positive allosteric modulators alone and in combination with levetiracetam in the mouse 6 Hz model of psychomotor seizures. Epilepsia 58, 484–493 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Blednov, Y. A. & Harris, R. A. Metabotropic glutamate receptor 5 (mGluR5) regulation of ethanol sedation, dependence and consumption: relationship to acamprosate actions. Int. J. Neuropsychopharmacol. 11, 775–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Bien, C. G., Braig, S. & Bien, C. I. Antibodies against metabotropic glutamate receptor type 1 in a toddler with acute cerebellitis. J. Neuroimmunol. 348, 577366 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Mehnert, J. M. et al. A phase II trial of riluzole, an antagonist of metabotropic glutamate receptor 1 (GRM1) signaling, in patients with advanced melanoma. Pigment. Cell Melanoma Res. 31, 534–540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Luessen, D. J. & Conn, P. J. Allosteric modulators of metabotropic glutamate receptors as novel therapeutics for neuropsychiatric disease. Pharmacol. Rev. 74, 630–661 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Liauw, B. W. et al. Conformational fingerprinting of allosteric modulators in metabotropic glutamate receptor 2. eLife 11, e78982 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bennett, K. A., Christopher, J. A. & Tehan, B. G. Structure-based discovery and development of metabotropic glutamate receptor 5 negative allosteric modulators. Adv. Pharmacol. 88, 35–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Orgován, Z., Ferenczy, G. G. & Keserű, G. M. Fragment-based approaches for allosteric metabotropic glutamate receptor (mGluR) modulators. Curr. Top. Med. Chem. 19, 1768–1781 (2019).

    Article  PubMed  Google Scholar 

  203. Wall, M. J. et al. Selective activation of Gɑob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression. Nat. Commun. 13, 4150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Willard, F. S. et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5, e140532 (2020).

  205. Chakravarthy, M. et al. 75-LB: CT-388, a novel once-weekly dual GLP-1 and GIP receptor modulator, is safe, well-tolerated, and produces more than 8% weight loss in four weeks in overweight and obese adults. Diabetes https://doi.org/10.2337/db23-75-LB (2023).

  206. Reversi, A. et al. The oxytocin receptor antagonist atosiban inhibits cell growth via a “biased agonist” mechanism. J. Biol. Chem. 280, 16311–16318 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Kim, S. H. et al. The oxytocin receptor antagonist, Atosiban, activates pro-inflammatory pathways in human amnion via Gαi signalling. Mol. Cell. Endocrinol. 420, 11–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Jørgensen, A. S. et al. Biased action of the CXCR4-targeting drug plerixafor is essential for its superior hematopoietic stem cell mobilization. Commun. Biol. 4, 569 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Kenakin, T. Bias translation: the final frontier? Br. J. Pharmacol. 181, 1345–1360 (2024).

    Article  CAS  PubMed  Google Scholar 

  210. Gillis, A. et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signal. 13, eaaz3140 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Kaplan, A. L. et al. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 610, 582–591 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Fink, E. A. et al. Structure-based discovery of nonopioid analgesics acting through the ɑ2A-adrenergic receptor. Science 377, eabn7065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kolb, P. et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br. J. Pharmacol. 179, 3651–3674 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Hauser, A. S. et al. GPCR activation mechanisms across classes and macro/microscales. Nat. Struct. Mol. Biol. 28, 879–888 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kotliar, I. B. et al. Multiplexed mapping of the interactome of GPCRs with receptor activity-modifying proteins. Sci. Adv. 10, eado9959 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Polacco, B. J. et al. Profiling the proximal proteome of the activated μ-opioid receptor. Nat. Chem. Biol. 20, 1133–1143 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wright, S. C. et al. GLP-1R signaling neighborhoods associate with the susceptibility to adverse drug reactions of incretin mimetics. Nat. Commun. 14, 6243 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Reiner-Link, D., Madsen, J. S., Gloriam, D. E., Brauner-Osborne, H. & Hauser, A. S. Differential G protein activation by the long and short isoforms of the dopamine D2 receptor. Br. J. Pharmacol. https://doi.org/10.1111/bph.16388 (2024).

  219. Kockelkoren, G. et al. Molecular mechanism of GPCR spatial organization at the plasma membrane. Nat. Chem. Biol. 20, 142–150 (2024).

    Article  CAS  PubMed  Google Scholar 

  220. Thompson, M. D. et al. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit. Rev. Clin. Lab. Sci. 61, 317–346 (2024).

    Article  CAS  PubMed  Google Scholar 

  221. Janicot, R. et al. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. Cell 187, 1527–1546.e25 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Edwards, A. What are the odds of finding a COVID-19 drug from a lab repurposing screen? J. Chem. Inf. Model. 60, 5727–5729 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Harding, S. D. et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2024. Nucleic Acids Res. 52, D1438–D1449 (2024).

    Article  PubMed  Google Scholar 

  224. Knox, C. et al. DrugBank 6.0: the DrugBank Knowledgebase for 2024. Nucleic Acids Res. 52, D1265–D1275 (2024).

    Article  CAS  PubMed  Google Scholar 

  225. Herrera, L. P. T. et al. GPCRdb in 2025: adding odorant receptors, data mapper, structure similarity search and models of physiological ligand complexes. Nucleic Acids Res. 53, D425–D435 (2025).

    Article  PubMed  Google Scholar 

  226. Kim, S. et al. PubChem 2023 update. Nucleic Acids Res. 51, D1373–D1380 (2023).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Lundbeck Foundation (R383-2022-306) and Novo Nordisk Foundation (NNF23OC0082561) to D.E.G. H.B.S was funded by the Swedish Research Council (2022-00562) and the Novo Nordisk Foundation (NNF22OC0078393). A.S.H. acknowledges funding from the Independent Research Fund Denmark (3122-00044B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Gloriam.

Ethics declarations

Competing interests

D.E.G. is a part-time employee and warrant-holder of Kvantify. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Brian Arey, David Thal and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Allosteric Database: https://mdl.shsmu.edu.cn/ASD/

Best-selling pharmaceuticals of 2023 reveal a shift in pharma landscape: https://www.drugdiscoverytrends.com/best-selling-pharmaceuticals-2023

Biased Signalling Atlas: https://biasedsignalingatlas.org/

CenterWatch: http://www.centerwatch.com

ChEMBL: https://www.ebi.ac.uk/chembl

ClinicalTrials.gov: https://clinicaltrials.gov

DrugBank: https://www.drugbank.ca

Drugs@FDA (approvals): https://www.accessdata.fda.gov/scripts/cder/daf

GPCRdb: http://www.gpcrdb.org

GPCRdb structure coverage: https://gpcrdb.org/structure/statistics

Guide To Pharmacology: http://www.guidetopharmacology.org

Illuminating the Druggable Genome programme: https://commonfund.nih.gov/idg

IUPHAR/BPS Guide to Pharmacology latest pairings: https://www.guidetopharmacology.org/latestPairings.jsp

Open Targets: https://www.targetvalidation.org

PDB: https://www.rcsb.org/pdb/home/home.do

Pharos: https://pharos.nih.gov/idg/index

PubMed: https://www.ncbi.nlm.nih.gov/pubmed

Visible Alpha GLP-1 Drug Monitor: blockbusters & up-and-comers: https://visiblealpha.com/blog/visible-alpha-glp-1-drug-monitor-blockbusters-up-and-comers/

Web-based resource dedicated to GPCR drug discovery: https://gpcrdb.org/

WIPO: https://www.wipo.int/portal/en/index.html

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorente, J.S., Sokolov, A.V., Ferguson, G. et al. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 24, 458–479 (2025). https://doi.org/10.1038/s41573-025-01139-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-025-01139-y

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research