Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting protein disorder: the next hurdle in drug discovery

Abstract

Intrinsically disordered proteins have key signalling and regulatory roles in cells and are frequently dysregulated in diseases such as cancer, neurodegeneration, inflammation and autoimmune disorders. Preventing the pathological functions mediated by structural disorder is crucial to successfully target proteins that drive transcription, biomolecular condensation and protein aggregation. However, owing to their heterogeneous, highly dynamic structural states, with ensembles of rapidly interconverting conformations, disordered proteins have been considered largely ‘undruggable’ by traditional approaches. Here, we review key developments of the field and suggest that the synergy of advanced experimental and computational approaches needs to be pursued to conquer this barrier in drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches to target the functions of disordered proteins.
Fig. 2: The human ‘disorderome’ is a significant proportion of disease-related proteomes.
Fig. 3: Example of conformational ensembles of an IDP and IDP–ligand binding modes.
Fig. 4: Timescale of biomolecular processes versus the temporal resolutions of biophysical and computational methods.
Fig. 5: Screening strategies and drug modalities for targeting disordered proteins.

Similar content being viewed by others

References

  1. wwPDB consortium. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528 (2018).

    Article  Google Scholar 

  2. Romero, P. et al. Thousands of proteins likely to have long disordered regions. Pac. Symp. Biocomput. 1998, 437–448 (1998).

    Google Scholar 

  3. Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999).

    Article  PubMed  Google Scholar 

  4. Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002).

    Article  PubMed  Google Scholar 

  5. Pancsa, R. & Tompa, P. Structural disorder in eukaryotes. PLoS ONE 7, e34687 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014). A comprehensive review on the structural and functional states enabled by intrinsic structural disorder.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Piersimoni, L. et al. Lighting up Nobel prize-winning studies with protein intrinsic disorder. Cell. Mol. Life Sci. 79, 449 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mészáros, B. et al. Minimum information guidelines for experiments structurally characterizing intrinsically disordered protein regions. Nat. Methods 20, 1291–1303 (2023).

    Article  PubMed  Google Scholar 

  10. Quaglia, F. et al. DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Res. 50, D480–D487 (2022).

    Article  PubMed  Google Scholar 

  11. Theillet, F.-X. et al. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50 (2016). Addressing the important question of the cellular structural state of IDPs, this paper reports the use of NMR and EPR to show that the disordered nature of monomeric α-synuclein is stably preserved in neuronal and non-neuronal cells.

    Article  PubMed  Google Scholar 

  12. Yu, M. et al. Visualizing the disordered nuclear transport machinery in situ. Nature 617, 162–169 (2023). Probes the structural state of disordered FG-NUP98 inside the nuclear pore complex in live cells by specific labelling and time-resolved fluorescence microscopy, and suggests that it adopts expanded conformations, which enable fine control of nucleocytoplasmic transport.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Perdigão, N. et al. Unexpected features of the dark proteome. Proc. Natl Acad. Sci. USA 112, 15898–15903 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tompa, P. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579, 3346–3354 (2005).

    Article  PubMed  Google Scholar 

  15. Szasz, C. S. et al. Protein disorder prevails under crowded conditions. Biochemistry 50, 5834–5844 (2011).

    Article  PubMed  Google Scholar 

  16. Ruff, K. M. & Pappu, R. V. AlphaFold and implications for intrinsically disordered proteins. J. Mol. Biol. 433, 167208 (2021).

    Article  PubMed  Google Scholar 

  17. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ghafouri, H. et al. PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins. Nucleic Acids Res. 52, D536–D544 (2024).

    Article  PubMed  Google Scholar 

  19. Necci, M., Piovesan, D., CAID Predictors, DisProt Curators & Tosatto, S. C. E. Critical assessment of protein intrinsic disorder prediction. Nat. Methods 18, 472–481 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ilzhöfer, D., Heinzinger, M. & Rost, B. SETH predicts nuances of residue disorder from protein embeddings. Front. Bioinform. 2, 1019597 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Piovesan, D. et al. MobiDB: 10 years of intrinsically disordered proteins. Nucleic Acids Res. 51, D438–D444 (2023).

    Article  PubMed  Google Scholar 

  22. Kumar, M. et al. The eukaryotic linear motif resource: 2022 release. Nucleic Acids Res. 50, D497–D508 (2022).

    Article  PubMed  Google Scholar 

  23. Tesei, G. et al. Conformational ensembles of the human intrinsically disordered proteome. Nature 626, 897–904 (2024). A comprehensive study simulating the structural ensembles of all disordered proteins in the proteome and correlating their cellular functions and localizations with descriptors of their conformational states, laying the foundations of ‘unstructural biology’.

    Article  PubMed  Google Scholar 

  24. Kim, D.-H. & Han, K.-H. Target-binding behavior of IDPs via pre-structured motifs. Prog. Mol. Biol. Transl. Sci. 183, 187–247 (2021).

    Article  PubMed  Google Scholar 

  25. Korkmazhan, E., Tompa, P. & Dunn, A. R. The role of ordered cooperative assembly in biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 647–648 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Uversky, V. N., Oldfield, C. J. & Dunker, A. K. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37, 215–246 (2008).

    Article  PubMed  Google Scholar 

  27. Mészáros, B., Hajdu-Soltész, B., Zeke, A. & Dosztányi, Z. Mutations of Intrinsically disordered protein regions can drive cancer but lack therapeutic strategies. Biomolecules 11, 381 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Henley, M. J. & Koehler, A. N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat. Rev. Drug Discov. 20, 669–688 (2021). Reviews transcription factor function in gene regulation and outlines possible targeting strategies and ongoing challenges; many of the concepts are highly relevant to the question of targeting IDPs.

    Article  PubMed  Google Scholar 

  29. Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022). Introduces the concept of c-mods as a potential new modality to target pathological condensates and discusses strategies, techniques and challenges.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang, H., Xiong, R. & Lai, L. Rational drug design targeting intrinsically disordered proteins. Wiley Interdiscip. Rev. Comput. Mol. Sci. 13, e1685 (2023). A review on targeting protein disorder in drug discovery with a focus on computational strategies. It highlights how AI, simulations and ensemble-based screening are advancing the discovery and optimization of IDP-targeting ligands.

    Article  Google Scholar 

  31. Keul, N. D. et al. The entropic force generated by intrinsically disordered segments tunes protein function. Nature 563, 584–588 (2018). Shows that a disordered region of an enzyme can function via entropic exclusion and does not depend on the amino acid sequence or chemical composition of the region.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cuylen, S. et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535, 308–312 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tompa, P. & Fuxreiter, M. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33, 2–8 (2008).

    Article  PubMed  Google Scholar 

  34. Borgia, A. et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555, 61–66 (2018). Demonstrates an extreme case of a ‘fuzzy’ picomolar protein–protein interaction realized between two oppositely charged IDPs, without either of them undergoing induced folding.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of in vitro FUS granules that bind the C-terminal ___domain of RNA polymerase II. Mol. Cell 60, 231–241 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  PubMed  Google Scholar 

  37. Mier, P. et al. Disentangling the complexity of low complexity proteins. Brief. Bioinform. 21, 458–472 (2020).

    Article  PubMed  Google Scholar 

  38. Kress, T. R., Sabò, A. & Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer 15, 593–607 (2015).

    Article  PubMed  Google Scholar 

  39. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Okuyama, H., Endo, H., Akashika, T., Kato, K. & Inoue, M. Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res. 70, 10213–10223 (2010).

    Article  PubMed  Google Scholar 

  41. Wegmann, S., Biernat, J. & Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol. 69, 131–138 (2021).

    Article  PubMed  Google Scholar 

  42. Hung, S.-Y. & Fu, W.-M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci. 24, 47 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  PubMed  Google Scholar 

  44. Soucek, L. et al. Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 17, 2463–2472 (1998).

    Article  PubMed  Google Scholar 

  45. Chen, Y., Zhou, Q., Hankey, W., Fang, X. & Yuan, F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis. 13, 632 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Miklossy, G., Hilliard, T. S. & Turkson, J. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12, 611–629 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Krishnan, N. et al. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10, 558–566 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lambert, J. M. R. et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core ___domain. Cancer Cell 15, 376–388 (2009).

    Article  PubMed  Google Scholar 

  49. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Salami, J. et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol. 1, 100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Richters, A. et al. Modulating androgen receptor-driven transcription in prostate cancer with selective CDK9 inhibitors. Cell Chem. Biol. 28, 134–147.e14 (2021).

    Article  PubMed  Google Scholar 

  52. Tatenhorst, L. et al. Fasudil attenuates aggregation of α-synuclein in models of Parkinson’s disease. Acta Neuropathol. Commun. 4, 39 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  54. Millar, S. R. et al. A new phase of networking: the molecular composition and regulatory dynamics of mammalian stress granules. Chem. Rev. 123, 9036–9064 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mehta, S. & Zhang, J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat. Rev. Cancer 22, 239–252 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Charman, M. et al. A viral biomolecular condensate coordinates assembly of progeny particles. Nature 616, 332–338 (2023).

    Article  PubMed  Google Scholar 

  59. Bouchard, J. J. et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol. Cell 72, 19–36.e8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xie, J. et al. Targeting androgen receptor phase separation to overcome antiandrogen resistance. Nat. Chem. Biol. 18, 1341–1350 (2022).

    Article  PubMed  Google Scholar 

  61. Basu, S. et al. Rational optimization of a transcription factor activation ___domain inhibitor. Nat. Struct. Mol. Biol. 30, 1958–1969 (2023). Combination of condensate-based and rational, disordered ensemble-based optimization of effective molecules that target the disordered transactivator ___domain of AR in cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kanaan, N. M., Hamel, C., Grabinski, T. & Combs, B. Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat. Commun. 11, 2809 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Patel, A. et al. Principles and functions of condensate modifying drugs. Front. Mol. Biosci. 9, 1007744 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martin, E. W. & Holehouse, A. S. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg. Top. Life Sci. 4, 307–329 (2020).

    Article  PubMed  Google Scholar 

  66. Andresen, V. et al. Anti-proliferative activity of the NPM1 interacting natural product avrainvillamide in acute myeloid leukemia. Cell Death Dis. 7, e2497 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Iserman, C. et al. Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Mol. Cell 80, 1078–1091.e6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021). An elegant study demonstrating that effective targeting of virus propagation can be achieved by a molecule that hardens a viral condensate, thereby inhibiting virion assembly.

    Article  PubMed  Google Scholar 

  69. Prince, P. R. et al. Initiation and modulation of Tau protein phase separation by the drug suramin. Sci. Rep. 13, 3963 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Garg, D. K. & Bhat, R. Modulation of assembly of TDP-43 low-complexity ___domain by heparin: from droplets to amyloid fibrils. Biophys. J. 121, 2568–2582 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Choi, U. B., Sanabria, H., Smirnova, T., Bowen, M. E. & Weninger, K. R. Spontaneous switching among conformational ensembles in intrinsically disordered proteins. Biomolecules 9, 114 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shah, K. & Kazi, J. U. Phosphorylation-dependent regulation of WNT/Beta-catenin signaling. Front. Oncol. 12, 858782 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sadar, M. D. Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor. Expert Opin. Drug Discov. 15, 551–560 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ban, D., Iconaru, L. I., Ramanathan, A., Zuo, J. & Kriwacki, R. W. A small molecule causes a population shift in the conformational landscape of an intrinsically disordered protein. J. Am. Chem. Soc. 139, 13692–13700 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhu, J., Salvatella, X. & Robustelli, P. Small molecules targeting the disordered transactivation ___domain of the androgen receptor induce the formation of collapsed helical states. Nat. Commun. 13, 6390 (2022). Highlights the use of all-atom molecular dynamics simulations to uncover the binding mechanisms of small molecules targeting an intrinsically disordered ___domain. By elucidating how these compounds stabilize specific conformations and identifying key interactions that drive binding affinity, the study provides crucial computational insights for designing more potent inhibitors.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Heller, G. T. et al. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer’s disease. Sci. Adv. 6, eabb5924 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Boike, L., Henning, N. J. & Nomura, D. K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 21, 881–898 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Singh, J., Petter, R. C., Baillie, T. A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).

    Article  PubMed  Google Scholar 

  79. Nair, S. K. & Burley, S. K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112, 193–205 (2003).

    Article  PubMed  Google Scholar 

  80. Wang, H. et al. Improved low molecular weight Myc-Max inhibitors. Mol. Cancer Ther. 6, 2399–2408 (2007).

    Article  PubMed  Google Scholar 

  81. Hammoudeh, D. I., Follis, A. V., Prochownik, E. V. & Metallo, S. J. Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J. Am. Chem. Soc. 131, 7390–7401 (2009).

    Article  PubMed  Google Scholar 

  82. Yu, C. et al. Structure-based inhibitor design for the intrinsically disordered protein c-Myc. Sci. Rep. 6, 22298 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Boike, L. et al. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. Cell Chem. Biol. 28, 4–13.e17 (2021). Screening a covalent library resulted in a Cys-modifying molecule, EN4, that targets the intrinsically disordered transactivation ___domain of MYC and reduces the thermal stability of MYC and MAX, inhibiting their transcriptional activity and tumorigenesis.

    Article  PubMed  Google Scholar 

  84. Neira, J. L. et al. Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Sci. Rep. 7, 39732 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Santofimia-Castaño, P. et al. Ligand-based design identifies a potent NUPR1 inhibitor exerting anticancer activity via necroptosis. J. Clin. Invest. 129, 2500–2513 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fujita, K. & Nonomura, N. Role of androgen receptor in prostate cancer: a review. World J. Mens Health 37, 288–295 (2019).

    Article  PubMed  Google Scholar 

  87. Andersen, R. J. et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus ___domain of the androgen receptor. Cancer Cell 17, 535–546 (2010).

    Article  PubMed  Google Scholar 

  88. De Mol, E. et al. EPI-001, a compound active against castration-resistant prostate cancer, targets transactivation unit 5 of the androgen receptor. ACS Chem. Biol. 11, 2499–2505 (2016). Key article describes the use of NMR to reveal how EPI-001 selectively binds to a partially folded region within the AR transactivation ___domain.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Myung, J.-K. et al. An androgen receptor N-terminal ___domain antagonist for treating prostate cancer. J. Clin. Invest. 123, 2948–2960 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hegyi, H., Buday, L. & Tompa, P. Intrinsic structural disorder confers cellular viability on oncogenic fusion proteins. PLoS Comput. Biol. 5, e1000552 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Iqbal, N. & Iqbal, N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother. Res. Pract. 2014, 357027 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Erkizan, H. V. et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat. Med. 15, 750–756 (2009). A HTP screen identifies molecules that inhibit the interaction of a disordered fusion protein, EWS::FLI1, with its oncogenic partner RHA. A notable case in which IDP binding and inhibition show enantiomeric selectivity.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Barber-Rotenberg, J. S. et al. Single enantiomer of YK-4-279 demonstrates specificity in targeting the oncogene EWS-FLI1. Oncotarget 3, 172–182 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Leach, B. I. et al. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 21, 176–183 (2013).

    Article  PubMed  Google Scholar 

  95. Palermo, C. M., Bennett, C. A., Winters, A. C. & Hemenway, C. S. The AF4-mimetic peptide, PFWT, induces necrotic cell death in MV4-11 leukemia cells. Leuk. Res. 32, 633–642 (2008).

    Article  PubMed  Google Scholar 

  96. Watson, V. G., Drake, K. M., Peng, Y. & Napper, A. D. Development of a high-throughput screening-compatible assay for the discovery of inhibitors of the AF4-AF9 interaction using AlphaScreen technology. Assay Drug Dev. Technol. 11, 253–268 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kazakova, O., Giniyatullina, G., Babkov, D. & Wimmer, Z. From marine metabolites to the drugs of the future: squalamine, trodusquemine, their steroid and triterpene analogues. Int. J. Mol. Sci. 23, 1075 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Krishnan, N., Konidaris, K. F., Gasser, G. & Tonks, N. K. A potent, selective, and orally bioavailable inhibitor of the protein-tyrosine phosphatase PTP1B improves insulin and leptin signaling in animal models. J. Biol. Chem. 293, 1517–1525 (2018).

    Article  PubMed  Google Scholar 

  99. Song, D. et al. PTP1B inhibitors protect against acute lung injury and regulate CXCR4 signaling in neutrophils. JCI Insight 7, e158199 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kriwacki, R. W., Hengst, L., Tennant, L., Reed, S. I. & Wright, P. E. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc. Natl Acad. Sci. USA 93, 11504–11509 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Guiley, K. Z. et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science 366, eaaw2106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Iconaru, L. I. et al. Discovery of small molecules that inhibit the disordered protein, p27Kip1. Sci. Rep. 5, 15686 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Calabresi, P. et al. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 14, 176 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tóth, G. et al. Targeting the intrinsically disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic strategy for Parkinson’s disease. PLoS ONE 9, e87133 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tóth, G. et al. Novel small molecules targeting the intrinsically disordered structural ensemble of α-synuclein protect against diverse α-synuclein mediated dysfunctions. Sci. Rep. 9, 16947 (2019). Describes an innovative approach to targeting an IDP using SPR-based screening for binders of small molecules immobilized on a microchip.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Robustelli, P. et al. Molecular basis of small-molecule binding to α-synuclein. J. Am. Chem. Soc. 144, 2501–2510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wen, J. et al. Conformational expansion of Tau in condensates promotes irreversible aggregation. J. Am. Chem. Soc. 143, 13056–13064 (2021).

    Article  PubMed  Google Scholar 

  108. Pickhardt, M. et al. Identification of small molecule inhibitors of Tau aggregation by targeting monomeric Tau as a potential therapeutic approach for tauopathies. Curr. Alzheimer Res. 12, 814–828 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dunn, B., Stein, P. & Cavazzoni, P. Approval of aducanumab for alzheimer disease-the FDA’s perspective. JAMA Intern. Med. 181, 1276–1278 (2021).

    Article  PubMed  Google Scholar 

  111. Gervais, F. et al. Targeting soluble abeta peptide with tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging 28, 537–547 (2007).

    Article  PubMed  Google Scholar 

  112. Hey, J. A. et al. Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in development for the treatment of Alzheimer’s disease. Clin. Pharmacokinet. 57, 315–333 (2018).

    Article  PubMed  Google Scholar 

  113. Faux, N. G. et al. PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J. Alzheimers Dis. 20, 509–516 (2010).

    Article  PubMed  Google Scholar 

  114. Fujihara, K. M. et al. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. Sci. Adv. 8, eabm9427 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Vincent, F. et al. Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat. Rev. Drug Discov. 21, 899–914 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Luo, S., Wohl, S., Zheng, W. & Yang, S. Biophysical and integrative characterization of protein intrinsic disorder as a prime target for drug discovery. Biomolecules 13, 530 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Monzon, A. M. et al. Experimentally determined long intrinsically disordered protein regions are now abundant in the Protein Data Bank. Int. J. Mol. Sci. 21, 4496 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Dyson, H. J. & Wright, P. E. NMR illuminates intrinsic disorder. Curr. Opin. Struct. Biol. 70, 44–52 (2021).

    Article  PubMed  Google Scholar 

  119. Hoch, J. C. et al. Biological magnetic resonance data bank. Nucleic Acids Res. 51, D368–D376 (2023).

    Article  PubMed  Google Scholar 

  120. Kleist, A. B. et al. Solution NMR spectroscopy of GPCRs: residue-specific labeling strategies with a focus on C-methyl methionine labeling of the atypical chemokine receptor ACKR3. Methods Cell Biol. 149, 259–288 (2019).

    Article  PubMed  Google Scholar 

  121. Nielsen, J. T. & Mulder, F. A. A. CheSPI: chemical shift secondary structure population inference. J. Biomol. NMR 75, 273–291 (2021).

    Article  PubMed  Google Scholar 

  122. Hafsa, N. E., Arndt, D. & Wishart, D. S. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts. Nucleic Acids Res. 43, W370–W377 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Shen, Y. & Bax, A. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. Methods Mol. Biol. 1260, 17–32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Peng, C. et al. Efficiently driving protein-based fragment screening and lead discovery using two-dimensional NMR. J. Biomol. NMR 77, 39–53 (2023).

    Article  PubMed  Google Scholar 

  125. Dietrich, J. D. et al. Development of orally efficacious allosteric inhibitors of TNFα via fragment-based drug design. J. Med. Chem. 64, 417–429 (2021).

    Article  PubMed  Google Scholar 

  126. Schiavina, M. et al. Intrinsically disordered proteins studied by NMR spectroscopy. J. Magn. Reson. Open 18, 100143 (2024).

    Article  Google Scholar 

  127. Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA 112, E3095–E3103 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Parson, M. A. H., Jenkins, M. L. & Burke, J. E. Investigating how intrinsically disordered regions contribute to protein function using HDX-MS. Biochem. Soc. Trans. 50, 1607–1617 (2022).

    Article  PubMed  Google Scholar 

  129. Bernadó, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. Structural characterization of flexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc. 129, 5656–5664 (2007).

    Article  PubMed  Google Scholar 

  130. Kikhney, A. G., Borges, C. R., Molodenskiy, D. S., Jeffries, C. M. & Svergun, D. I. SASBDB: towards an automatically curated and validated repository for biological scattering data. Protein Sci. 29, 66–75 (2020).

    Article  PubMed  Google Scholar 

  131. Salmon, L. et al. NMR characterization of long-range order in intrinsically disordered proteins. J. Am. Chem. Soc. 132, 8407–8418 (2010).

    Article  PubMed  Google Scholar 

  132. Drescher, M. EPR in protein science : intrinsically disordered proteins. Top. Curr. Chem. 321, 91–119 (2012).

    Article  PubMed  Google Scholar 

  133. Konrat, R. NMR contributions to structural dynamics studies of intrinsically disordered proteins. J. Magn. Reson. 241, 74–85 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Schuler, B., Soranno, A., Hofmann, H. & Nettels, D. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys. 45, 207–231 (2016).

    Article  PubMed  Google Scholar 

  135. Tsytlonok, M. et al. Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation. Nat. Commun. 10, 1676 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Jeganathan, S., von Bergen, M., Brutlach, H., Steinhoff, H.-J. & Mandelkow, E. Global hairpin folding of tau in solution. Biochemistry 45, 2283–2293 (2006).

    Article  PubMed  Google Scholar 

  137. Naudi-Fabra, S., Tengo, M., Jensen, M. R., Blackledge, M. & Milles, S. Quantitative description of intrinsically disordered proteins using single-molecule FRET, NMR, and SAXS. J. Am. Chem. Soc. 143, 20109–20121 (2021). Suggests that an integrated approach to characterization of structural ensembles of IDPs using orthogonal data is required to derive quantitative conformational ensembles of predictive nature that withstand cross-validation.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kodera, N. et al. Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. Nat. Nanotechnol. 16, 181–189 (2021).

    Article  PubMed  Google Scholar 

  139. Braitbard, M., Schneidman-Duhovny, D. & Kalisman, N. Integrative structure modeling: overview and assessment. Annu. Rev. Biochem. 88, 113–135 (2019).

    Article  PubMed  Google Scholar 

  140. Schwalbe, M. et al. Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 22, 238–249 (2014).

    Article  PubMed  Google Scholar 

  141. Gomes, G.-N. W. et al. Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS, and single-molecule FRET. J. Am. Chem. Soc. 142, 15697–15710 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ritsch, I. et al. Phase separation of heterogeneous nuclear ribonucleoprotein A1 upon specific RNA-Binding observed by magnetic resonance. Angew. Chem. Int. Ed. Engl. 61, e202204311 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Thomasen, F. E. & Lindorff-Larsen, K. Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem. Soc. Trans. 50, 541–554 (2022).

    Article  PubMed  Google Scholar 

  144. Ferrie, J. J. & Petersson, E. J. A unified de novo approach for predicting the structures of ordered and disordered proteins. J. Phys. Chem. B 124, 5538–5548 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pietrek, L. M., Stelzl, L. S. & Hummer, G. Hierarchical ensembles of intrinsically disordered proteins at atomic resolution in molecular dynamics simulations. J. Chem. Theory Comput. 16, 725–737 (2020).

    Article  PubMed  Google Scholar 

  146. Teixeira, J. M. C. et al. IDPConformerGenerator: a flexible software suite for sampling the conformational space of disordered protein states. J. Phys. Chem. A 126, 5985–6003 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Liu, Z. H. et al. Local disordered region sampling (LDRS) for ensemble modeling of proteins with experimentally undetermined or low confidence prediction segments. Bioinformatics 39, btad739 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Li, D. & Brüschweiler, R. PPM_one: a static protein structure based chemical shift predictor. J. Biomol. NMR 62, 403–409 (2015).

    Article  PubMed  Google Scholar 

  149. Salvi, N., Abyzov, A. & Blackledge, M. Multi-Timescale dynamics in intrinsically disordered proteins from NMR relaxation and molecular simulation. J. Phys. Chem. Lett. 7, 2483–2489 (2016).

    Article  PubMed  Google Scholar 

  150. Li, J., Bennett, K. C., Liu, Y., Martin, M. V. & Head-Gordon, T. Accurate prediction of chemical shifts for aqueous protein structure on ‘Real World’ data. Chem. Sci. 11, 3180–3191 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tesei, G. et al. DEER-PREdict: Software for efficient calculation of spin-labeling EPR and NMR data from conformational ensembles. PLoS Comput. Biol. 17, e1008551 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gräwert, T. W. & Svergun, D. I. Structural modeling using solution small-angle X-ray scattering (SAXS). J. Mol. Biol. 432, 3078–3092 (2020).

    Article  PubMed  Google Scholar 

  153. Nagy, G., Igaev, M., Jones, N. C., Hoffmann, S. V. & Grubmüller, H. SESCA: predicting circular dichroism spectra from protein molecular structures. J. Chem. Theory Comput. 15, 5087–5102 (2019).

    Article  PubMed  Google Scholar 

  154. Bakker, M. J., Mládek, A., Semrád, H., Zapletal, V. & Pavlíková Přecechtělová, J. Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach. Phys. Chem. Chem. Phys. 24, 27678–27692 (2022).

    Article  PubMed  Google Scholar 

  155. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A 32, 922–923 (1976).

    Article  Google Scholar 

  156. Kryshtafovych, A., Monastyrskyy, B. & Fidelis, K. CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL. Proteins 82, 7–13 (2014).

    Article  PubMed  Google Scholar 

  157. Burger, V. M. et al. Quasi-anharmonic analysis reveals intermediate states in the nuclear co-activator receptor binding ___domain ensemble. Pac. Symp. Biocomput. 2012, 70–81 (2011).

    Google Scholar 

  158. Appadurai, R., Koneru, J. K., Bonomi, M., Robustelli, P. & Srivastava, A. Clustering heterogeneous conformational ensembles of intrinsically disordered proteins with t-distributed stochastic neighbor embedding. J. Chem. Theory Comput. 19, 4711–4727 (2023). Outlines an approach to identify homogeneous conformational substrates of IDPs from heterogeneous ensemble data, providing structural models that could support rational drug design.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lazar, T. et al. Distance-based metrics for comparing conformational ensembles of intrinsically disordered proteins. Biophys. J. 118, 2952–2965 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tria, G., Mertens, H. D. T., Kachala, M. & Svergun, D. I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2, 207–217 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Krzeminski, M., Marsh, J. A., Neale, C., Choy, W.-Y. & Forman-Kay, J. D. Characterization of disordered proteins with ENSEMBLE. Bioinformatics 29, 398–399 (2013).

    Article  PubMed  Google Scholar 

  162. Crehuet, R., Buigues, P. J., Salvatella, X. & Lindorff-Larsen, K. Bayesian-maximum-entropy reweighting of IDP ensembles based on NMR chemical shifts. Entropy 21, 898 (2019).

    Article  PubMed Central  Google Scholar 

  163. Fisher, C. K., Huang, A. & Stultz, C. M. Modeling intrinsically disordered proteins with bayesian statistics. J. Am. Chem. Soc. 132, 14919–14927 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Bottaro, S. & Lindorff-Larsen, K. Biophysical experiments and biomolecular simulations: a perfect match? Science 361, 355–360 (2018).

    Article  PubMed  Google Scholar 

  165. Lincoff, J. et al. Extended experimental inferential structure determination method in determining the structural ensembles of disordered protein states. Commun. Chem. 3, 74 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wang, W. Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Phys. Chem. Chem. Phys. 23, 777–784 (2021).

    Article  PubMed  Google Scholar 

  167. Hollingsworth, S. A. & Dror, R. O. Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Ye, W., Ji, D., Wang, W., Luo, R. & Chen, H.-F. Test and evaluation of ff99IDPs force field for intrinsically disordered proteins. J. Chem. Inf. Model. 55, 1021–1029 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017). Enhances the accuracy of the CHARMM36 force field for simulation of the conformational ensembles of IDPs, providing better representation of their dynamic structures in molecular simulations.

    Article  PubMed  Google Scholar 

  170. Liu, H., Song, D., Lu, H., Luo, R. & Chen, H.-F. Intrinsically disordered protein-specific force field CHARMM36IDPSFF. Chem. Biol. Drug Des. 92, 1722–1735 (2018).

    Article  PubMed  Google Scholar 

  171. Robustelli, P., Piana, S. & Shaw, D. E. Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl Acad. Sci. USA 115, E4758–E4766 (2018). Improves an existing Amber force field for modelling disordered and ordered proteins, providing a way to accurately simulate compact and extended conformations.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Liu, M. et al. Configurational entropy of folded proteins and its importance for intrinsically disordered proteins. Int. J. Mol. Sci. 22, 3420 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lazim, R., Suh, D. & Choi, S. Advances in molecular dynamics simulations and enhanced sampling methods for the study of protein systems. Int. J. Mol. Sci. 21, 6339 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Piana, S., Donchev, A. G., Robustelli, P. & Shaw, D. E. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B 119, 5113–5123 (2015).

    Article  PubMed  Google Scholar 

  175. Dignon, G. L., Zheng, W. & Mittal, J. Simulation methods for liquid-liquid phase separation of disordered proteins. Curr. Opin. Chem. Eng. 23, 92–98 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Thomasen, F. E., Pesce, F., Roesgaard, M. A., Tesei, G. & Lindorff-Larsen, K. Improving martini 3 for disordered and multidomain proteins. J. Chem. Theory Comput. 18, 2033–2041 (2022).

    Article  PubMed  Google Scholar 

  177. Wu, H., Wolynes, P. G. & Papoian, G. A. AWSEM-IDP: a coarse-grained force field for intrinsically disordered proteins. J. Phys. Chem. B 122, 11115–11125 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Klein, F., Barrera, E. E. & Pantano, S. Assessing SIRAH’s capability to simulate intrinsically disordered proteins and peptides. J. Chem. Theory Comput. 17, 599–604 (2021).

    Article  PubMed  Google Scholar 

  179. Liu, S., Wang, C., Latham, A., Ding, X. & Zhang, B. OpenABC enables flexible, simplified, and efficient GPU accelerated simulations of biomolecular condensates. PLoS Comput. Biol. 11, e1011442 (2023).

    Article  Google Scholar 

  180. Pietrek, L. M., Stelzl, L. S. & Hummer, G. Structural ensembles of disordered proteins from hierarchical chain growth and simulation. Curr. Opin. Struct. Biol. 78, 102501 (2023).

    Article  PubMed  Google Scholar 

  181. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Brotzakis, Z. F., Zhang, S. & Vendruscolo, M. AlphaFold prediction of structural ensembles of disordered proteins. Nat. Commun. 16, 1632 (2023).

    Article  Google Scholar 

  183. Vani, B. P., Aranganathan, A., Wang, D. & Tiwary, P. AlphaFold2-RAVE: from sequence to boltzmann ranking. J. Chem. Theory Comput. 19, 4351–4354 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Gupta, A., Dey, S., Hicks, A. & Zhou, H.-X. Artificial intelligence guided conformational mining of intrinsically disordered proteins. Commun. Biol. 5, 610 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Janson, G., Valdes-Garcia, G., Heo, L. & Feig, M. Direct generation of protein conformational ensembles via machine learning. Nat. Commun. 14, 774 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Zhang, O. et al. Learning to evolve structural ensembles of unfolded and disordered proteins using experimental solution data. J. Chem. Phys. 158, 174113 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  PubMed  Google Scholar 

  188. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Miles, A. J., Drew, E. D. & Wallace, B. A. DichroIDP: a method for analyses of intrinsically disordered proteins using circular dichroism spectroscopy. Commun. Biol. 6, 823 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Patrick Walters, W. & Wang, R. New trends in virtual screening. J. Chem. Inf. Model. 60, 4109–4111 (2020).

    Article  PubMed  Google Scholar 

  191. Maia, E. H. B., Assis, L. C., de Oliveira, T. A., da Silva, A. M. & Taranto, A. G. Structure-based virtual screening: from classical to artificial intelligence. Front. Chem. 8, 481382 (2020).

    Article  Google Scholar 

  192. Halgren, T. A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 49, 377–389 (2009).

    Article  PubMed  Google Scholar 

  193. Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10, 168 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Xu, Y. et al. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res. 46, W374–W379 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zhu, M. et al. Identification of small-molecule binding pockets in the soluble monomeric form of the Aβ42 peptide. J. Chem. Phys. 139, 035101 (2013).

    Article  PubMed  Google Scholar 

  196. Jin, F., Yu, C., Lai, L. & Liu, Z. Ligand clouds around protein clouds: a scenario of ligand binding with intrinsically disordered proteins. PLoS Comput. Biol. 9, e1003249 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Smith, R. D. & Carlson, H. A. Identification of cryptic binding sites using MixMD with standard and accelerated molecular dynamics. J. Chem. Inf. Model. 61, 1287–1299 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Liu, C. et al. Diffusing protein binders to intrinsically disordered proteins. Preprint at bioRxiv https://doi.org/10.1101/2024.07.16.603789 (2024).

  199. Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605–619 (2016).

    Article  PubMed  Google Scholar 

  200. Petros, A. M. et al. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg. Med. Chem. Lett. 24, 1484–1488 (2014).

    Article  PubMed  Google Scholar 

  201. Joshi, P. et al. A fragment-based method of creating small-molecule libraries to target the aggregation of intrinsically disordered proteins. ACS Comb. Sci. 18, 144–153 (2016).

    Article  PubMed  Google Scholar 

  202. Petri, L. et al. A covalent strategy to target intrinsically disordered proteins: discovery of novel tau aggregation inhibitors. Eur. J. Med. Chem. 231, 114163 (2022).

    Article  PubMed  Google Scholar 

  203. Wulff, J. E., Siegrist, R. & Myers, A. G. The natural product avrainvillamide binds to the oncoprotein nucleophosmin. J. Am. Chem. Soc. 129, 14444–14451 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Mukherjee, H. et al. Interactions of the natural product (+)-avrainvillamide with nucleophosmin and exportin-1 mediate the cellular localization of nucleophosmin and its AML-associated mutants. ACS Chem. Biol. 10, 855–863 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Sakamoto, K. M. et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteom. 2, 1350–1358 (2003).

    Article  Google Scholar 

  206. Chu, T.-T. et al. Specific knockdown of endogenous Tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem. Biol. 23, 453–461 (2016).

    Article  PubMed  Google Scholar 

  207. Lee, M. J. et al. Methods to detect AUTOphagy-targeting chimera (AUTOTAC)-mediated targeted protein degradation in tauopathies. Bio Protoc. 13, e4594 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Peterson, A. A. & Liu, D. R. Small-molecule discovery through DNA-encoded libraries. Nat. Rev. Drug Discov. 22, 699–722 (2023). A comprehensive review of this technology, which offers many advantages compared with traditional screening methods including the use of extremely large library sizes of small molecules.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Wu, W. et al. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Med. Res. 28, 544 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Grossmann, T. N. et al. Inhibition of oncogenic Wnt signaling through direct targeting of β-catenin. Proc. Natl Acad. Sci. USA 109, 17942–17947 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Chan, T. S. Y. et al. Thrombospondin-1 mimetics are promising novel therapeutics for MYC-associated medulloblastoma. Neurooncol. Adv. 3, vdab002 (2021).

    PubMed  PubMed Central  Google Scholar 

  212. Rahimi, F. Aptamers selected for recognizing amyloid β-protein-A case for cautious optimism. Int. J. Mol. Sci. 19, 668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Tran, C. H., Saha, R., Blanco, C., Bagchi, D. & Chen, I. A. Modulation of α-synuclein aggregation in vitro by a DNA aptamer. Biochemistry 61, 1757–1765 (2022).

    Article  PubMed  Google Scholar 

  214. Gouw, M. et al. How to annotate and submit a short linear motif to the eukaryotic linear motif resource. Methods Mol. Biol. 2141, 73–102 (2020).

    Article  PubMed  Google Scholar 

  215. Cunningham, J. M., Koytiger, G., Sorger, P. K. & AlQuraishi, M. Biophysical prediction of protein-peptide interactions and signaling networks using machine learning. Nat. Methods 17, 175–183 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Tsaban, T. et al. Harnessing protein folding neural networks for peptide-protein docking. Nat. Commun. 13, 176 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Benz, C. et al. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Mol. Syst. Biol. 18, e10584 (2022). An optimized peptide–phage display library of all disordered regions in the human proteome is used to discover SLiMs binding to known binding domains, revealing potentially targetable functional sites of IDPs.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

    Article  PubMed  Google Scholar 

  220. DeMott, C. M. et al. Potent inhibitors of Mycobacterium tuberculosis growth identified by using in-cell NMR-based screening. ACS Chem. Biol. 13, 733–741 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  PubMed  Google Scholar 

  222. Prosser, K. E., Stokes, R. W. & Cohen, S. M. Evaluation of 3-dimensionality in approved and experimental drug space. ACS Med. Chem. Lett. 11, 1292–1298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., International Natural Product Sciences Taskforce & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ruan, H., Sun, Q., Zhang, W., Liu, Y. & Lai, L. Targeting intrinsically disordered proteins at the edge of chaos. Drug Discov. Today 24, 217–227 (2019). Outlines ligands found to target IDPs and describes rational drug design approaches.

    Article  PubMed  Google Scholar 

  225. Raghavan, B. et al. Drug design in the exascale era: a perspective from massively parallel QM/MM simulations. J. Chem. Inf. Model. 63, 3647 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Shaw, D. E. et al. Anton 3. in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. https://doi.org/10.1145/3458817.3487397 (ACM, 2021).

  227. Bayarri, G., Hospital, A. & Orozco, M. 3dRS, a web-based tool to share interactive representations of 3D biomolecular structures and molecular dynamics trajectories. Front. Mol. Biosci. 8, 726232 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Amaro, R. E. et al. The need to implement FAIR principles in biomolecular simulations. Nat. Methods 22, 641–645 (2025).

    Article  PubMed  Google Scholar 

  229. González-Delgado, J. et al. WASCO: a wasserstein-based statistical tool to compare conformational ensembles of intrinsically disordered proteins. J. Mol. Biol. 435, 168053 (2023).

    Article  PubMed  Google Scholar 

  230. Hacker, S. M. & Jessen-Trefzer, C. Chemical biology in drug discovery. Biol. Chem. 403, 361–362 (2022).

    Article  PubMed  Google Scholar 

  231. Gao, Y., Sun, T.-Y., Bai, W.-F. & Bai, C.-G. Design, synthesis and evaluation of novel phenothiazine derivatives as inhibitors of breast cancer stem cells. Eur. J. Med. Chem. 183, 111692 (2019).

    Article  PubMed  Google Scholar 

  232. Lan, W. et al. Targeting NUPR1 with the small compound ZZW-115 is an efficient strategy to treat hepatocellular carcinoma. Cancer Lett. 486, 8–17 (2020).

    Article  PubMed  Google Scholar 

  233. Laccetti, A. L. et al. Phase 1/2 study of EPI-7386 in combination with enzalutamide (enz) compared with enz alone in subjects with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 41 (Suppl. 6), Abstr. 179 (2023).

    Article  Google Scholar 

  234. Garcia-Manero, G. Current status of phase 3 clinical trials in high-risk myelodysplastic syndromes: pitfalls and recommendations. Lancet Haematol. 10, e71–e78 (2023).

    Article  PubMed  Google Scholar 

  235. Wu, F. et al. Small-molecule inhibitor of AF9/ENL-DOT1L/AF4/AFF4 interactions suppresses malignant gene expression and tumor growth. Theranostics 11, 8172–8184 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Lantz, K. A. et al. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity 18, 1516–1523 (2010).

    Article  PubMed  Google Scholar 

  237. Finkelstein, D. I. et al. The compound ATH434 prevents alpha-synuclein toxicity in a murine model of multiple system atrophy. J. Parkinsons Dis. 12, 105–115 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Kocis, P. et al. Elucidating the Aβ42 anti-aggregation mechanism of action of tramiprosate in Alzheimer’s disease: integrating molecular analytical methods, pharmacokinetic and clinical data. CNS Drugs 31, 495–509 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Liang, S. H. et al. Novel fluorinated 8-hydroxyquinoline based metal ionophores for exploring the metal hypothesis of Alzheimer’s disease. ACS Med. Chem. Lett. 6, 1025–1029 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Grissa, D., Junge, A., Oprea, T. I. & Jensen, L. J. Diseases 2.0: a weekly updated database of disease-gene associations from text mining and data integration. Database 2022, baac019 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Schriml, L. M. et al. The human disease ontology 2022 update. Nucleic Acids Res. 50, D1255–D1261 (2022).

    Article  PubMed  Google Scholar 

  242. Beauchamp, K. A. et al. MSMBuilder2: modeling conformational dynamics at the picosecond to millisecond scale. J. Chem. Theory Comput. 7, 3412–3419 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Zeng, S., Baillargeat, D., Ho, H.-P. & Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43, 3426–3452 (2014).

    Article  PubMed  Google Scholar 

  244. Pellecchia, M. et al. Perspectives on NMR in drug discovery: a technique comes of age. Nat. Rev. Drug Discov. 7, 738–745 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Heller, G. T., Shukla, V. K., Figueiredo, A. M. & Hansen, D. F. Picosecond dynamics of a small molecule in its bound state with an intrinsically disordered protein. J. Am. Chem. Soc. 146, 2319–2324 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Andreotti, G., Monticelli, M. & Cubellis, M. V. Looking for protein stabilizing drugs with thermal shift assay. Drug Test. Anal. 7, 831–834 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Beveridge, R. & Calabrese, A. N. Structural proteomics methods to interrogate the conformations and dynamics of intrinsically disordered proteins. Front. Chem. 9, 603639 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Borysik, A. J., Kovacs, D., Guharoy, M. & Tompa, P. Ensemble methods enable a new definition for the solution to gas-phase transfer of intrinsically disordered proteins. J. Am. Chem. Soc. 137, 13807–13817 (2015).

    Article  PubMed  Google Scholar 

  249. Xie, Y., Zhang, J., Yin, S. & Loo, J. A. Top-down ESI-ECD-FT-ICR mass spectrometry localizes noncovalent protein-ligand binding sites. J. Am. Chem. Soc. 128, 14432–14433 (2006).

    Article  PubMed  Google Scholar 

  250. Larbig, G., Pickhardt, M., Lloyd, D. G., Schmidt, B. & Mandelkow, E. Screening for inhibitors of tau protein aggregation into Alzheimer paired helical filaments: a ligand based approach results in successful scaffold hopping. Curr. Alzheimer Res. 4, 315–323 (2007).

    Article  PubMed  Google Scholar 

  251. Wang, C. et al. Scalable production of iPSC-derived human neurons to identify Tau-lowering compounds by high-content screening. Stem Cell Rep. 9, 1221–1233 (2017).

    Article  Google Scholar 

  252. Barbuti, P. et al. Using high-content screening to generate single-cell gene-corrected patient-derived iPS clones reveals excess alpha-synuclein with familial Parkinson’s disease point mutation A30P. Cells 9, 2065 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Fang, M. Y. et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 103, 802–819.e11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Bantscheff, M. & Drewes, G. Chemoproteomic approaches to drug target identification and drug profiling. Bioorg. Med. Chem. 20, 1973–1978 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was implemented with support from the National Research, Development and Innovation Fund of the Ministry of Culture and Innovation under the RGH_24 (RGH 151464) Grant Agreement with the National Research, Development and Innovation Office, Hungary, and grants from the National Research, Development and Innovation Office, Hungary (NKFIH, no. K124670 and K131702) to P.T. T.L. is holder of a postdoctoral innovation mandate (grant no. HBC.2022.0194) from the Flanders Innovation & Entrepreneurship Agency (VLAIO). T.L. and P.T. also thank the members of the ELIXIR Intrinsically Disordered Protein Community and the ML4NGP COST Action (CA21160) consortium for the fruitful discussions relevant to the topic of the article.

Author information

Authors and Affiliations

Authors

Contributions

T.L. conceived and wrote the manuscript, created figures, read and corrected the manuscript; A.C. conceived and wrote the manuscript, created figures, read and corrected the manuscript; C.F.D. conceived and wrote the manuscript, created figures, read and corrected the manuscript; V.B. conceived and wrote the manuscript, created figures, read and corrected the manuscript; P.T. conceived and wrote the manuscript, created figures, read and corrected the manuscript.

Corresponding authors

Correspondence to Virginia Burger or Peter Tompa.

Ethics declarations

Competing interests

V.B. and P.T. were co-founders and former board members of New Equilibrium Biosciences, and A.C. and C.F.D. were employees at New Equilibrium Biosciences, an IDP-targeting drug discovery company that was dissolved in 2023. Currently, V.B. is employed at Blackbird Laboratories. A.C. is a full-time employee of Versatope Therapeutics. C.F.D. is a full-time employee of Malvern Panalytical. The other author declares no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Paul Robustelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

MDDB: https://mddbr.eu/

Glossary

Binding pockets

Specific regions of the surface of a protein involved in binding to small molecules, such as a substrate, coenzyme, ligand or drug molecule. Identifiable by mutations and direct binding analyses, they differ in terms of amino acid distribution, hydrophobicity and convexity from the rest of the protein surface.

Biomolecular condensation

A term used interchangeably with phase separation especially as applied to biologically relevant processes, leading to the formation of biomolecular condensates, such as membraneless organelles, chromatin, nuclear pore, the cytoplasmic portions of membrane protein clusters and the extracellular matrix.

Condensatopathies

Aberrations of biomolecular condensates that drive specific disease phenotypes observed in vitro or in vivo. They result from aberrant formation, overactivation or altered material state of the condensate, or mislocalization of key components.

Conformational ensemble

The set of rapidly interconverting conformations adopted by a disordered protein, each found at a local free energy minimum. More than one ensemble can comply with a given set of experimental observables.

Conformational selection

A process whereby partner binding by a disordered region occurs by the binding-competent conformation that is present in the conformational ensemble. If the structural transition occurs after binding, it is termed induced folding.

Entropic chains

A function unique to intrinsically disordered proteins derived directly from the disordered state, for example, via exerting force or providing spatial confinement for flanking regions beyond the disordered region.

Globular proteins

Also globular domains. Fully structured or ‘folded’ proteins, or those with structured regions.

Induced folding

A process whereby a disordered binding region undergoes transition to a structured partner-bound state following engagement with the partner. If the transition occurs before binding, it is termed conformational selection.

Intrinsic structural disorder

The polypeptide chain of many proteins, or regions, does not take a stable, folded structure, but remains unfolded or disordered for part of their lifetime. They are structurally characterized as a conformational ensemble, sometimes oversimplified as a random coil.

Intrinsically disordered proteins and regions

(IDPs and IDRs). A protein that is structurally disordered along its entire length is most often termed an IDP, whereas if only a region of it is disordered, an IDR. Proteins are often a mixture of globular domains and IDRs.

Low-complexity domains

(LCDs). Stretches of protein that contain a limited set of amino acids and/or have internal sequence repeats. LCDs often, but not always, occur within intrinsically disordered proteins or regions.

Phase separation

A physical process in which a solution of macromolecules (often a mixture of proteins and RNA) demixes into two phases, one depleted, the other enriched in concentration. Also termed biomolecular condensation (and in a narrow sense, liquid–liquid phase separation), it gives rise to biomolecular condensates in the cell.

Random coils

Completely ‘disordered’ conformational state of intrinsically disordered proteins or regions in which residues are oriented randomly relative to one another. A protein in a random-coil state samples all possible conformations randomly (the free energy landscape has no substantial local minimum, but is essentially flat), without any short- or long-range constraints of distance or orientation.

Short linear motifs

(SLiMs). Conserved, linear sequences of amino acids (also termed eukaryotic linear motifs), most often within intrinsically disordered proteins or regions, that mediate recognition and targeting activities of the protein. SLiM function is most often realized by folding that is induced upon binding to a cognate recognition ___domain, so a 3D structure of the parent protein is not necessarily helpful.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazar, T., Connor, A., DeLisle, C.F. et al. Targeting protein disorder: the next hurdle in drug discovery. Nat Rev Drug Discov (2025). https://doi.org/10.1038/s41573-025-01220-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-025-01220-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing