Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the Hippo pathway in cancer

Abstract

The Hippo pathway is a highly conserved signalling network that controls tissue growth and cell fate, responding to physical properties of the tissue microenvironment and cell biological features such as adhesion and polarity. Hippo signalling perturbation is associated with several human diseases, particularly various solid cancers. Hippo pathway-targeted therapies are beginning to emerge for the treatment of cancer, most of which are focused on disrupting the ability of the YAP and TAZ transcription co-activator proteins to promote transcription of genes with their cognate TEAD1–4 DNA binding proteins. Recently, TEAD inhibitors have shown promise in a phase I clinical trial in cancers that are enriched for Hippo pathway mutations, such as mesothelioma. Moreover, Hippo pathway-targeted therapies have great potential to be combined with RAS–MAPK pathway inhibitors, given the close functional relationship that these signalling pathways share in development and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified depiction of the human Hippo pathway.
Fig. 2: How can the Hippo pathway be therapeutically targeted?
Fig. 3: Structures of select TEAD palmitate binding pocket and YAP–TEAD protein–protein interaction inhibitors.

Similar content being viewed by others

References   

  1. Tapon, N. et al. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Pantalacci, S., Tapon, N. & Leopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat. Cell Biol. 5, 921–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, S., Huang, J., Dong, J. & Pan, D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and Warts. Cell 114, 445–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Jia, J., Zhang, W., Wang, B., Trinko, R. & Jiang, J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 17, 2514–2519 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–5730 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat. Cell Biol. 5, 914–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila MST ortholog, Hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Gaspar, P. & Tapon, N. Sensing the local environment: actin architecture and Hippo signalling. Curr. Opin. Cell Biol. 31C, 74–83 (2014).

    Article  Google Scholar 

  11. Zheng, Y. & Pan, D. The Hippo signaling pathway in development and disease. Dev. Cell 50, 264–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meng, Z., Moroishi, T. & Guan, K. L. Mechanisms of Hippo pathway regulation. Genes Dev. 30, 1–17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moya, I. M. & Halder, G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat. Rev. Mol. Cell Biol. 20, 211–226 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Harvey, K. F., Zhang, X. & Thomas, D. M. The Hippo pathway and human cancer. Nat. Rev. Cancer 13, 246–257 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Staley, B. K. & Irvine, K. D. Hippo signaling in Drosophila: recent advances and insights. Dev. Dyn. 241, 3–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Enderle, L. & McNeill, H. Hippo gains weight: added insights and complexity to pathway control. Sci. Signal. 6, re7 (2013).

    Article  PubMed  Google Scholar 

  17. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oka, T., Mazack, V. & Sudol, M. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J. Biol. Chem. 283, 27534–27546 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Sebé-Pedrós, A., Zheng, Y., Ruiz-Trillo, I. & Pan, D. Premetazoan origin of the Hippo signaling pathway. Cell Rep. 1, 13–20 (2012).

    Article  PubMed  Google Scholar 

  22. Ikmi, A. et al. Molecular evolution of the Yap/Yorkie proto-oncogene and elucidation of its core transcriptional program. Mol. Biol. Evol. 31, 1375–1390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mikeladze-Dvali, T. et al. The growth regulators warts/lats and melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell 122, 775–787 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Nishioka, N. et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Y. et al. Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 25, 1304–1317.e1305 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kulkarni, A., Chang, M. T., Vissers, J. H. A., Dey, A. & Harvey, K. F. The Hippo pathway as a driver of select human cancers. Trends Cancer 6, 781–796 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, D. et al. MST1 and MST2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the YAP1 oncogene. Cancer Cell 16, 425–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, J. H. et al. A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J. 27, 1231–1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi, S., Cox, A. G., Harvey, K. F. & Hogan, B. M. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev. Cell 58, 2627–2640 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Heallen, T. et al. Hippo pathway inhibits WNT signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watt, K. I. et al. The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nat. Commun. 6, 6048 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Cao, X., Pfaff, S. L. & Gage, F. H. YAP regulates neural progenitor cell number via the TEA ___domain transcription factor. Genes Dev. 22, 3320–3334 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jukam, D. et al. Opposite feedbacks in the Hippo pathway for growth control and neural fate. Science 342, 1238016 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pojer, J. M., Manning, S. A., Kroeger, B., Kondo, S. & Harvey, K. F. The Hippo pathway uses different machinery to control cell fate and organ size. iScience 24, 102830 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pojer, J. M., Saiful Hilmi, A. J., Kondo, S. & Harvey, K. F. Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genet. 17, e1009146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jukam, D. & Desplan, C. Binary regulation of Hippo pathway by Merlin/NF2, Kibra, Lgl, and Melted specifies and maintains postmitotic neuronal fate. Dev. Cell 21, 874–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kowalczyk, W. et al. Hippo signaling instructs ectopic but not normal organ growth. Science 378, eabg3679 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Halder, G., Dupont, S. & Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13, 591–600 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Sun, S. & Irvine, K. D. Cellular organization and cytoskeletal regulation of the Hippo signaling network. Trends Cell Biol. 26, 694–704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907–3914 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Rauskolb, C., Sun, S., Sun, G., Pan, Y. & Irvine, K. D. Cytoskeletal tension inhibits Hippo signaling through an Ajuba-Warts complex. Cell 158, 143–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oh, H. et al. Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes. Cell Rep. 3, 309–318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oh, H. et al. Yorkie promotes transcription by recruiting a histone methyltransferase complex. Cell Rep. 8, 449–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qing, Y. et al. The Hippo effector Yorkie activates transcription by interacting with a histone methyltransferase complex through Ncoa6. eLife 3, e02564 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zanconato, F. et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat. Cell Biol. 17, 1218–1227 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Galli, G. G. et al. YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol. Cell 60, 328–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goulev, Y. et al. Scalloped interacts with Yorkie, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr. Biol. 18, 435–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Ota, M. & Sasaki, H. Mammalian tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135, 4059–4069 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, S., Liu, Y., Zheng, Y., Dong, J. & Pan, D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev. Cell 14, 388–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, L. et al. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev. Cell 14, 377–387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koontz, L. M. et al. The Hippo effector Yorkie controls normal tissue growth by antagonizing Scalloped-mediated default repression. Dev. Cell 25, 388–401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo, T. et al. A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res. 23, 1201–1214 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vissers, J. H. A. et al. The Scalloped and Nerfin-1 transcription factors cooperate to maintain neuronal cell fate. Cell Rep. 25, 1561–1576.e1567 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Guo, P. et al. Nerfin-1 represses transcriptional output of Hippo signaling in cell competition. eLife 8, e38843 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vissers, J. H. A., Dent, L. G., House, C. M., Kondo, S. & Harvey, K. F. Pits and CtBP control tissue growth in Drosophila melanogaster with the Hippo pathway transcription repressor Tgi. Genetics 215, 117–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, W. et al. The TEA ___domain family transcription factor TEAD4 represses murine adipogenesis by recruiting the cofactors VGLL4 and CtBP2 into a transcriptional complex. J. Biol. Chem. 293, 17119–17134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manning, S. A. et al. The Drosophila Hippo pathway transcription factor Scalloped and its co-factors alter each other’s chromatin binding dynamics and transcription in vivo. Dev. Cell 59, 1640–1654.e1645 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Kroeger, B. et al. Hippo signalling regulates the nuclear behaviour and DNA dwell times of YAP and TEAD to control transcription. Preprint at https://doi.org/10.1101/2025.03.11.642705 (2025).

  62. Asrani, K. et al. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer. J. Pathol. 255, 425–437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Halder, G. et al. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes Dev. 12, 3900–3909 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paumard-Rigal, S., Zider, A., Vaudin, P. & Silber, J. Specific interactions between Vestigial and Scalloped are required to promote wing tissue proliferation in Drosophila melanogaster. Dev. Genes Evol. 208, 440–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Zider, A., Paumard-Rigal, S., Frouin, I. & Silber, J. The vestigial gene of Drosophila melanogaster is involved in the formation of the peripheral nervous system: genetic interactions with the scute gene. J. Neurogenet. 12, 87–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Sonnemann, H. M., Pazdrak, B., Antunes, D. A., Roszik, J. & Lizee, G. Vestigial-like 1 (VGLL1): an ancient co-transcriptional activator linking wing, placenta, and tumor development. Biochim. Biophys. Acta Rev. Cancer 1878, 188892 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Simmonds, A. J. et al. Molecular interactions between Vestigial and Scalloped promote wing formation in Drosophila. Genes Dev. 12, 3815–3820 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lai, Z. C. et al. Control of cell proliferation and apoptosis by Mob as tumor suppressor, Mats. Cell 120, 675–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Meng, Z. et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat. Commun. 6, 8357 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Zheng, Y. et al. Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev. Cell 34, 642–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boggiano, J. C., Vanderzalm, P. J. & Fehon, R. G. Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev. Cell 21, 888–895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Poon, C. L., Lin, J. I., Zhang, X. & Harvey, K. F. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev. Cell 21, 896–906 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Ribeiro, P. S. et al. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol. Cell 39, 521–534 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Grusche, F. A., Richardson, H. E. & Harvey, K. F. Upstream regulation of the Hippo size control pathway. Curr. Biol. 20, R574–R582 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Su, T., Ludwig, M. Z., Xu, J. & Fehon, R. G. Kibra and Merlin activate the Hippo pathway spatially distinct from and independent of Expanded. Dev. Cell 40, 478–490.e473 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun, S., Reddy, B. V. & Irvine, K. D. Localization of Hippo signalling complexes and Warts activation in vivo. Nat. Commun. 6, 8402 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Angus, L. et al. Willin/FRMD6 expression activates the Hippo signaling pathway kinases in mammals and antagonizes oncogenic YAP. Oncogene 31, 238–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Guo, P. et al. PI4P-mediated solid-like Merlin condensates orchestrate Hippo pathway regulation. Science 385, eadf4478 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, F. L. et al. Hippo pathway regulation by phosphatidylinositol transfer protein and phosphoinositides. Nat. Chem. Biol. 18, 1076–1086 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Grzeschik, N. A., Parsons, L. M., Allott, M. L., Harvey, K. F. & Richardson, H. E. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr. Biol. 20, 573–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Robinson, B. S., Huang, J., Hong, Y. & Moberg, K. H. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-___domain protein expanded. Curr. Biol. 20, 582–590 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ling, C. et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc. Natl Acad. Sci. USA 107, 10532–10537 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, C. L. et al. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc. Natl Acad. Sci. USA 107, 15810–15815 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Varelas, X. et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev. Cell 19, 831–844 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Bossuyt, W. et al. An evolutionary shift in the regulation of the Hippo pathway between mice and flies. Oncogene 33, 1218–1228 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, C. et al. Integrated screens uncover a cell surface tumor suppressor gene KIRREL involved in Hippo pathway. Proc. Natl Acad. Sci. USA 119, e2121779119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gu, Y. et al. Transmembrane protein KIRREL1 regulates Hippo signaling via a feedback loop and represents a therapeutic target in YAP/TAZ-active cancers. Cell Rep. 40, 111296 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Deng, H. et al. Spectrin regulates Hippo signaling by modulating cortical actomyosin activity. eLife 4, e06567 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fletcher, G. C. et al. The spectrin cytoskeleton regulates the Hippo signalling pathway. EMBO J. 34, 940–954 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wong, K. K. et al. β-Spectrin regulates the hippo signaling pathway and modulates the basal actin network. J. Biol. Chem. 290, 6397–6407 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ibar, C., Chinthalapudi, K., Heissler, S. M. & Irvine, K. D. Competition between myosin II and beta(H)-spectrin regulates cytoskeletal tension. eLife 12, RP84918 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tyler, D. M. & Baker, N. E. Expanded and Fat regulate growth and differentiation in the Drosophila eye through multiple signaling pathways. Dev. Biol. 305, 187–201 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Willecke, M. et al. The Fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr. Biol. 16, 2090–2100 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. The tumor-suppressor gene Fat controls tissue growth upstream of expanded in the Hippo signaling pathway. Curr. Biol. 16, 2081–2089 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Cho, E. et al. Delineation of a Fat tumor suppressor pathway. Nat. Genet. 38, 1142–1150 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Bennett, F. C. & Harvey, K. F. Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr. Biol. 16, 2101–2110 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Gridnev, A. & Misra, J. R. Emerging mechanisms of growth and patterning regulation by Dachsous and Fat protocadherins. Front. Cell Dev. Biol. 10, 842593 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Martin, D. et al. Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nat. Commun. 9, 2372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lu, W. T. et al. TRACERx analysis identifies a role for FAT1 in regulating chromosomal instability and whole-genome doubling via Hippo signalling. Nat. Cell Biol. 27, 154–168 (2025).

    Article  CAS  PubMed  Google Scholar 

  101. Das Thakur, M. et al. Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr. Biol. 20, 657–662 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kroeger, B. et al. Basal spot junctions of Drosophila epithelial tissues respond to morphogenetic forces and regulate Hippo signaling. Dev. Cell 59, 262–279.e266 (2024).

    Article  CAS  PubMed  Google Scholar 

  103. Ibar, C. et al. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J. Cell Sci. 131, jcs214700 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Huang, H. L. et al. Par-1 regulates tissue growth by influencing Hippo phosphorylation status and Hippo-Salvador association. PLoS Biol. 11, e1001620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tokamov, S. A. et al. Cortical tension promotes Kibra degradation via Par-1. Mol. Biol. Cell 35, ar2 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Heidary Arash, E., Shiban, A., Song, S. & Attisano, L. MARK4 inhibits Hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep. 18, 420–436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kwan, J. et al. DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes Dev. 30, 2696–2709 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Klingbeil, O. et al. MARK2/MARK3 kinases are catalytic codependencies of YAP/TAZ in human cancer. Cancer Discov. 14, 2471–2488 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Feng, Y. & Irvine, K. D. Fat and Expanded act in parallel to regulate growth through Warts. Proc. Natl Acad. Sci. USA 104, 20362–20367 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Qi, S. et al. Two Hippo signaling modules orchestrate liver size and tumorigenesis. EMBO J. 42, e115749 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yu, J. et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev. Cell 18, 288–299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Genevet, A., Wehr, M. C., Brain, R., Thompson, B. J. & Tapon, N. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev. Cell 18, 300–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Baumgartner, R., Poernbacher, I., Buser, N., Hafen, E. & Stocker, H. The WW ___domain protein Kibra acts upstream of Hippo in Drosophila. Dev. Cell 18, 309–316 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Dey, A., Varelas, X. & Guan, K. L. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat. Rev. Drug Discov. 19, 480–494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wang, J., Liu, S., Heallen, T. & Martin, J. F. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat. Rev. Cardiol. 15, 672–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Petrilli, A. M. & Fernández-Valle, C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 35, 537–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Fossdal, R. et al. A novel TEAD1 mutation is the causative allele in Sveinsson’s chorioretinal atrophy (helicoid peripapillary chorioretinal degeneration). Hum. Mol. Genet. 13, 975–981 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the Cancer Genome Atlas. Cell 173, 321–337.e310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  120. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Murakami, H. et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 71, 873–883 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Sekido, Y. Inactivation of Merlin in malignant mesothelioma cells and the Hippo signaling cascade dysregulation. Pathol. Int. 61, 331–344 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Bueno, R. et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 48, 407–416 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Markowitz, P. et al. Genomic characterization of malignant pleural mesothelioma and associated clinical outcomes. Cancer Treat. Res. Commun. 25, 100232 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sekido, Y. & Sato, T. NF2 alteration in mesothelioma. Front. Toxicol. 5, 1161995 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Tanas, M. R. et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci. Transl. Med. 3, 98ra82 (2011).

    Article  PubMed  Google Scholar 

  127. Errani, C. et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 50, 644–653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Merritt, N. et al. TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. eLife 10, e62857 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Seavey, C. N., Pobbati, A. V. & Rubin, B. P. Unraveling the biology of epithelioid hemangioendothelioma, a TAZ-CAMTA1 fusion driven sarcoma. Cancers 14, 2980 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Garcia, K., Gingras, A. C., Harvey, K. F. & Tanas, M. R. TAZ/YAP fusion proteins: mechanistic insights and therapeutic opportunities. Trends Cancer 8, 1033–1045 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Agaimy, A. et al. Recurrent VGLL3 fusions define a distinctive subset of spindle cell rhabdomyosarcoma with an indolent clinical course and striking predilection for the head and neck. Genes Chromosomes Cancer 61, 701–709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Guo, S. et al. VGLL2 and TEAD1 fusion proteins identified in human sarcoma drive YAP/TAZ-independent tumorigenesis by engaging EP300. eLife 13, 98386 (2025).

    Article  Google Scholar 

  133. Pearson, J. D. et al. Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell 39, 1115–1134.e1112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Marine, J. C., Dawson, S. J. & Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 20, 743–756 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Nguyen, C. D. K. & Yi, C. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer 5, 283–296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kapoor, A. et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185–197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lin, L. et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat. Genet. 47, 250–256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hagenbeek, T. J. et al. An allosteric pan-TEAD inhibitor blocks oncogenic YAP/TAZ signaling and overcomes KRAS G12C inhibitor resistance. Nat. Cancer 4, 812–828 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mukhopadhyay, S. et al. Genome-wide CRISPR screens identify multiple synthetic lethal targets that enhance KRASG12C inhibitor efficacy. Cancer Res. 83, 4095–4111 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tape, C. J. Plastic persisters: revival stem cells in colorectal cancer. Trends Cancer 10, 185–195 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. Han, T. et al. Lineage reversion drives WNT independence in intestinal cancer. Cancer Discov. 10, 1590–1609 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Qin, X. et al. An oncogenic phenoscape of colonic stem cell polarization. Cell 186, 5554–5568.e5518 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Rebekah, M. et al. Patient-derived colorectal cancer organoids upregulate revival stem cell marker genes following chemotherapeutic treatment. J. Clin. Med. 9, 128 (2020).

    Article  Google Scholar 

  145. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Fan, F. et al. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 8, 352ra108 (2016).

    Article  PubMed  Google Scholar 

  147. Zhang, P. et al. Exploration of MST1-mediated secondary brain injury induced by intracerebral hemorrhage in Rats via Hippo signaling pathway. Transl. Stroke Res. 10, 729–743 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Wu, Y. et al. Discovery of IHMT-MST1-58 as a novel, potent, and selective MST1 inhibitor for the treatment of type 1/2 diabetes. J. Med. Chem. 65, 11818–11839 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Kastan, N. et al. Small-molecule inhibition of Lats kinases may promote Yap-dependent proliferation in postmitotic mammalian tissues. Nat. Commun. 12, 3100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kastan, N. R. et al. Development of an improved inhibitor of Lats kinases to promote regeneration of mammalian organs. Proc. Natl Acad. Sci. 119, e2206113119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Aihara, A. et al. Small molecule LATS kinase inhibitors block the Hippo signaling pathway and promote cell growth under 3D culture conditions. J. Biol. Chem. 298, 101779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Issabayeva, G. et al. Discovery of selective LATS inhibitors via scaffold hopping: enhancing drug-likeness and kinase selectivity for potential applications in regenerative medicine. RSC Med. Chem. 15, 4080–4089 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Namoto, K. et al. NIBR-LTSi is a selective LATS kinase inhibitor activating YAP signaling and expanding tissue stem cells in vitro and in vivo. Cell Stem Cell 31, 554–569.e517 (2024).

    Article  CAS  PubMed  Google Scholar 

  154. Burgess, C. L. et al. Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell 31, 657–675.e658 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dost, A. F. M. et al. A human organoid model of alveolar regeneration reveals distinct epithelial responses to interferon-gamma. Preprint at https://doi.org/10.1101/2025.01.30.635624 (2025).

  156. Liu, S. et al. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci. Transl. Med. 13, eabd6892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/search?term=NCT06831825 (2025).

  158. Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kim, N. G. & Gumbiner, B. M. Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J. Cell Biol. 210, 503–515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Woodard, G. A., Yang, Y. L., You, L. & Jablons, D. M. Drug development against the Hippo pathway in mesothelioma. Transl. Lung Cancer Res. 6, 335–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dhanaraman, T. et al. RASSF effectors couple diverse RAS subfamily GTPases to the Hippo pathway. Sci. Signal. 13, eabb4778 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Gill, M. K. et al. A feed forward loop enforces YAP/TAZ signaling during tumorigenesis. Nat. Commun. 9, 3510 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Yuan, W. C. et al. NUAK2 is a critical YAP target in liver cancer. Nat. Commun. 9, 4834 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Port, J. et al. Colorectal tumors require NUAK1 for protection from oxidative stress. Cancer Discov. 8, 632–647 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Skalka, G. L., Whyte, D., Lubawska, D. & Murphy, D. J. NUAK: never underestimate a kinase. Essays Biochem. 68, 295–307 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Graham, K. et al. Discovery of YAP1/TAZ pathway inhibitors through phenotypic screening with potent anti-tumor activity via blockade of Rho-GTPase signaling. Cell Chem. Biol. 31, 1247–1263.e1216 (2024).

    Article  CAS  PubMed  Google Scholar 

  167. Macleod, A. R. The discovery and characterization of ION-537: a next generation antisense oligonucleotide inhibitor of YAP1 in preclinical cancer models. Cancer Res. 81 (Suppl. 13), Abstr. ND11 (2021).

    Article  Google Scholar 

  168. Zhou, C. et al. Exploring degradation of intrinsically disordered protein Yes-associated protein induced by proteolysis targeting chimeras. J. Med. Chem. 67, 15168–15198 (2024).

    Article  CAS  PubMed  Google Scholar 

  169. Barbosa, I. A. M. et al. Cancer lineage-specific regulation of YAP responsive elements revealed through large-scale functional epigenomic screens. Nat. Commun. 14, 3907 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pobbati, A. V. et al. Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy. Structure 23, 2076–2086 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chan, P. et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Nat. Chem. Biol. 12, 282–289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Noland, C. L. et al. Palmitoylation of TEAD transcription factors is required for their stability and function in Hippo pathway signaling. Structure 24, 179–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Baroja, I., Kyriakidis, N. C., Halder, G. & Moya, I. M. Expected and unexpected effects after systemic inhibition of Hippo transcriptional output in cancer. Nat. Commun. 15, 2700 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Brennan, D., Liang, Y., Mlynarski, S. & Zhu, B.-Y. in 2024 Medicinal Chemistry Reviews (vol. 59) Ch. 9, 175-201 (ACS, 2024).

  175. Pobbati, A. V., Kumar, R., Rubin, B. P. & Hong, W. Therapeutic targeting of TEAD transcription factors in cancer. Trends Biochem. Sci. 48, 450–462 (2023).

    Article  CAS  PubMed  Google Scholar 

  176. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e516 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Tang, T. T. et al. Small molecule inhibitors of TEAD auto-palmitoylation selectively inhibit proliferation and tumor growth of NF2-deficient mesothelioma. Mol. Cancer Ther. 20, 986–998 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Lu, W. et al. Discovery and biological evaluation of vinylsulfonamide derivatives as highly potent, covalent TEAD autopalmitoylation inhibitors. Eur. J. Med. Chem. 184, 111767 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Li, Q. et al. Lats1/2 sustain intestinal stem cells and Wnt activation through TEAD-dependent and independent transcription. Cell Stem Cell 26, 675–692.e678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kaneda, A. et al. The novel potent TEAD inhibitor, K-975, inhibits YAP1/TAZ-TEAD protein-protein interactions and exerts an anti-tumor effect on malignant pleural mesothelioma. Am. J. Cancer Res. 10, 4399–4415 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Heinrich, T. et al. Optimization of TEAD P-site binding fragment hit into in vivo active lead MSC-4106. J. Med. Chem. 65, 9206–9229 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Lu, W. et al. Structure-based design of Y-shaped covalent TEAD inhibitors. J. Med. Chem. 66, 4617–4632 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hillen, H. et al. A novel irreversible TEAD inhibitor, SWTX-143, blocks Hippo pathway transcriptional output and causes tumor regression in preclinical mesothelioma models. Mol. Cancer Ther. 23, 3–13 (2024).

    Article  CAS  PubMed  Google Scholar 

  184. Young, N. et al. Abstract 1646: IK-930, a paralog-selective TEAD inhibitor for treating YAP/TAZ-TEAD dependent cancers. Cancer Res. 83 (Suppl. 7), 1646 (2023).

    Article  Google Scholar 

  185. Gordon, J. A. et al. Abstract 6589: Discovery of potent and selective pan-TEAD autopalmitoylation inhibitors for the treatment of Hippo-pathway altered cancers. Cancer Res. 84 (Suppl. 6), 6589 (2024).

    Article  Google Scholar 

  186. Guo, S. et al. Abstract 4976: Preclinical characterization of BGI-9004, a covalent TEAD inhibitor with exceptional anti-cancer activity and combination potential. Cancer Res. 83 (Suppl. 7), 4976 (2023).

    Article  Google Scholar 

  187. Han, X. et al. Abstract 7575: BPI-460372, a covalent, irreversible TEAD inhibitor in phase I clinical development. Cancer Res. 84 (Suppl. 6), 7575 (2024).

    Article  Google Scholar 

  188. Chen, P.-Y. et al. Abstract 7264: OPN-9840, a non-covalent potent pan-TEAD inhibitor, exhibits single agent efficacy in preclinical malignant mesothelioma models. Cancer Res. 84 (Suppl. 6), 7264 (2024).

    Article  Google Scholar 

  189. Lu, J. et al. Abstract 7265: ETS-005, a highly selective TEAD4 palmitoylation inhibitor with potent anti-tumor activity and brain penetrating capability. Cancer Res. 84 (Suppl. 6), 7265 (2024).

    Article  Google Scholar 

  190. Muller, F., Kunnimalaiyaan, S., Mangrolia, P. & Olson, J. Abstract 5913: TEAD1/4 inhibitors exhibit deeper biological impact and broader activity compared to TEAD1-only inhibitors in both monotherapy and combination without additional kidney toxicity. Cancer Res. 84 (Suppl. 6), 5913 (2024).

    Article  Google Scholar 

  191. Kim, J. et al. Pan-transcriptional enhanced associated ___domain palmitoylation pocket covalent inhibitor. J. Med. Chem. 67, 18957–18968 (2024).

    Article  CAS  PubMed  Google Scholar 

  192. Moure, C. J. et al. Activation of hepatocyte growth factor/MET signaling as a mechanism of acquired resistance to a novel YAP1/TEAD small molecule inhibitor. Mol. Cancer Ther. 23, 1095–1108 (2024).

    Article  CAS  PubMed  Google Scholar 

  193. Heinrich, T. et al. MoA studies of the TEAD P-site binding ligand MSC-4106 and its optimization to TEAD1-selective amide M3686. J. Med. Chem. 68, 6149–6164 (2025).

    Article  CAS  PubMed  Google Scholar 

  194. Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122.e112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bum-Erdene, K. et al. Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEADYap protein-protein interaction. Cell Chem. Biol. 26, 378–389.e313 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Yap, T. A. et al. Abstract CT006: First-in-class, first-in-human phase 1 trial of VT3989, an inhibitor of Yes-associated protein (YAP)/transcriptional enhancer activator ___domain (TEAD), in patients (pts) with advanced solid tumors enriched for malignant mesothelioma and other tumors with neurofibromatosis 2 (NF2) mutations. Cancer Res. 83 (Suppl. 8), CT006 (2023).

    Article  Google Scholar 

  197. Yap, T. A. et al. First-in-class, first-in-human phase 1 trial of VT3989, an inhibitor of Yes-Associated Protein (YAP)/Transcriptional EnhancerActivator Domain (TEAD), in patients with advanced solid tumors enriched for malignant mesothelioma and other tumors with neurofibromatosis 2 (NF2) mutations. AACR Annual Meeting 2023 https://vivacetherapeutics.com/wp-content/uploads/Vivace-Therapeutics-2023-AACR-Presentation.pdf (2023).

  198. Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hau, J. C. et al. The TEAD4-YAP/TAZ protein-protein interaction: expected similarities and unexpected differences. Chembiochem 14, 1218–1225 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Zhang, Z. et al. Structure-based design and synthesis of potent cyclic peptides inhibiting the YAP-TEAD protein-protein interaction. ACS Med. Chem. Lett. 5, 993–998 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mesrouze, Y. et al. Dissection of the interaction between the intrinsically disordered YAP protein and the transcription factor TEAD. eLife 6, e25068 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Furet, P. et al. Structure-based design of potent linear peptide inhibitors of the YAP-TEAD protein-protein interaction derived from the YAP omega-loop sequence. Bioorg. Med. Chem. Lett. 29, 2316–2319 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Furet, P. et al. The first class of small molecules potently disrupting the YAP-TEAD interaction by direct competition. ChemMedChem 17, e202200303 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Mesrouze, Y. et al. Biochemical and structural characterization of a peptidic inhibitor of the YAP:TEAD interaction that binds to the α-Helix pocket on TEAD. ACS Chem. Biol. 18, 643–651 (2023).

    Article  CAS  PubMed  Google Scholar 

  205. Sellner, H. et al. Optimization of a class of dihydrobenzofurane analogs toward orally efficacious YAP-TEAD protein-protein interaction inhibitors. ChemMedChem 18, e202300051 (2023).

    Article  CAS  PubMed  Google Scholar 

  206. Chapeau, E. A. et al. Direct and selective pharmacological disruption of the YAP–TEAD interface by IAG933 inhibits Hippo-dependent and RAS–MAPK-altered cancers. Nat. Cancer 5, 1102–1120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lu, J. et al. Abstract 4585: discovery of ETS-006, a highly potent YAP/TEADs PPI inhibitor with broad anti-tumor activity as a single agent. Cancer Res. 84, 4585(2024).

    Article  Google Scholar 

  208. Karatas, H. et al. Discovery of covalent inhibitors targeting the transcriptional enhanced associate ___domain central pocket. J. Med. Chem. 63, 11972–11989 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Sawant, R. et al. Abstract LB029: Degraders of TEAD transcription factors based on interface 3 binders. Cancer Res. 84 (Suppl. 7), LB029 (2024).

    Article  Google Scholar 

  210. Lu, Y. et al. Selective degradation of TEADs by a PROTAC molecule exhibited robust anticancer efficacy in vitro and in vivo. J. Med. Chem. 68, 5616–5640 (2025).

    Article  CAS  PubMed  Google Scholar 

  211. Chen, H. et al. Targeted degradation of specific TEAD paralogs by small molecule degraders. Heliyon 10, e37829 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Li, H. et al. Design, synthesis, and bioevaluation of transcriptional enhanced assocciated ___domain (TEAD) PROTAC degraders. ACS Med. Chem. Lett. 15, 631–639 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Deng, X. & Fang, L. VGLL4 is a transcriptional cofactor acting as a novel tumor suppressor via interacting with TEADs. Am. J. Cancer Res. 8, 932–943 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Cai, J. et al. YAP-VGLL4 antagonism defines the major physiological function of the Hippo signaling effector YAP. Genes Dev. 36, 1119–1128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhao, B., Pobbati, A. V., Rubin, B. P. & Stauffer, S. Leveraging hot spots of TEAD-coregulator interactions in the design of direct small molecule protein-protein interaction disruptors targeting Hippo pathway signaling. Pharmaceuticals 16, 583 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Jiao, S. et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Kulkarni, A. et al. Identification of resistance mechanisms to small-molecule inhibition of TEAD-regulated transcription. EMBO Rep. 25, 3944–3969 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Guarnaccia, A. D. et al. TEAD-targeting small molecules induce a cofactor switch to regulate the Hippo pathway. Preprint at https://doi.org/10.1101/2024.11.15.623512 (2024).

  219. Seavey, C. N. et al. Loss of CDKN2A cooperates with WWTR1(TAZ)-CAMTA1 gene fusion to promote tumor progression in epithelioid hemangioendothelioma. Clin. Cancer Res. 29, 2480–2493 (2023).

    Article  CAS  PubMed  Google Scholar 

  220. Zhang, F. et al. Recurrent RhoGAP gene fusion CLDN18-ARHGAP26 promotes RHOA activation and focal adhesion kinase and YAP-TEAD signalling in diffuse gastric cancer. Gut 73, 1280–1291 (2024).

    Article  CAS  PubMed  Google Scholar 

  221. Saito, Y. et al. A therapeutically targetable TAZ-TEAD2 pathway drives the growth of hepatocellular carcinoma via ANLN and KIF23. Gastroenterology 164, 1279–1292 (2023).

    Article  CAS  PubMed  Google Scholar 

  222. Holden, J. K. et al. Small molecule dysregulation of TEAD lipidation induces a dominant-negative inhibition of Hippo pathway signaling. Cell Rep. 31, 107809 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Sato, K. et al. Targeting YAP/TAZ-TEAD signaling as a therapeutic approach in head and neck squamous cell carcinoma. Cancer Lett. 612, 217467 (2025).

    Article  CAS  PubMed  Google Scholar 

  224. Murakami, S., White, S. M., McIntosh, A. T., Nguyen, C. D. K. & Yi, C. Spontaneously evolved progenitor niches escape Yap oncogene addiction in advanced pancreatic ductal adenocarcinomas. Nat. Commun. 14, 1443 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Barrette, A. M. et al. Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor verteporfin in preclinical glioblastoma models. Neuro Oncol. 24, 694–707 (2022).

    Article  CAS  PubMed  Google Scholar 

  226. Laraba, L. et al. Inhibition of YAP/TAZ-driven TEAD activity prevents growth of NF2-null schwannoma and meningioma. Brain 146, 1697–1713 (2023).

    Article  PubMed  Google Scholar 

  227. Press release: Ikena Oncology shares initial positive and differentiated dose escalation data from IK-930 phase I trial and reports third quarter 2023 financial results. Ikena Oncology https://ir.ikenaoncology.com/node/7936/pdf (2023).

  228. Press Release: Ikena Oncology announes strategic update. Ikena Oncology https://ir.ikenaoncology.com/node/8131/pdf (2024).

  229. Tang, T. T. & Post, L. Abstract 7282: Comparing TEAD palmitoylation inhibitors with differential TEAD selectivity in combination efficacy with targeted therapies and in renal safety. Cancer Res. 84 (Suppl. 6), 7282 (2024).

    Article  Google Scholar 

  230. Hashimoto, M. & Sasaki, H. Epiblast formation by TEAD-YAP-dependent expression of pluripotency factors and competitive elimination of unspecified cells. Dev. Cell 50, 139–154.e135 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Nishioka, N. et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev. 125, 270–283 (2008).

    Article  CAS  PubMed  Google Scholar 

  232. Sawada, A. et al. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol. Cell Biol. 28, 3177–3189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Chen, Z., Friedrich, G. A. & Soriano, P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2293–2301 (1994).

    Article  CAS  PubMed  Google Scholar 

  234. Kaneko, K. J., Kohn, M. J., Liu, C. & DePamphilis, M. L. Transcription factor TEAD2 is involved in neural tube closure. Genesis 45, 577–587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836 (2007).

    Article  CAS  PubMed  Google Scholar 

  236. Kakiuchi-Kiyota, S., Schutten, M. M., Zhong, Y., Crawford, J. J. & Dey, A. Safety considerations in the development of Hippo pathway inhibitors in cancers. Front. Cell Dev. Biol. 7, 156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Wong, J. S., Meliambro, K., Ray, J. & Campbell, K. N. Hippo signaling in the kidney: the good and the bad. Am. J. Physiol. Ren. Physiol. 311, F241–F248 (2016).

    Article  CAS  Google Scholar 

  238. Schwartzman, M. et al. Podocyte-specific deletion of Yes-associated protein causes FSGS and progressive renal failure. J. Am. Soc. Nephrol. 27, 216–226 (2016).

    Article  CAS  PubMed  Google Scholar 

  239. Chen, J., Wang, X., He, Q. & Harris, R. C. TAZ is important for maintenance of the integrity of podocytes. Am. J. Physiol. Ren. Physiol. 322, F419–F428 (2022).

    Article  CAS  Google Scholar 

  240. Pavenstädt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev. 83, 253–307 (2003).

    Article  PubMed  Google Scholar 

  241. Chung, J. J. et al. Single-cell transcriptome profiling of the kidney glomerulus identifies key cell types and reactions to injury. J. Am. Soc. Nephrol. 31, 2341–2354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Chen, J. et al. Inhibition of transcriptional coactivator YAP impairs the expression and function of transcription factor WT1 in diabetic podocyte injury. Kidney Int. 105, 1200–1211 (2024).

    Article  CAS  PubMed  Google Scholar 

  243. Rinschen, M. M. et al. YAP-mediated mechanotransduction determines the podocyte’s response to damage. Sci. Signal. 10, eaaf8165 (2017).

    Article  PubMed  Google Scholar 

  244. Haley, K. E. et al. YAP translocation precedes cytoskeletal rearrangement in podocyte stress response: a podometric investigation of diabetic nephropathy. Front. Physiol. 12, 625762 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Kaneda, A. et al. Abstract 3086: discovery of a first-in-class TEAD inhibitor which directly inhibits YAP/TAZ-TEAD protein-protein interaction and shows a potent anti-tumor effect in malignant pleural mesothelioma. Cancer Res. 79, 3086 (2019).

    Article  Google Scholar 

  246. Paul, S., Sims, J., Pham, T. & Dey, A. Targeting the Hippo pathway in cancer: kidney toxicity as a class effect of TEAD inhibitors? Trends Cancer 11, 25–36 (2024).

    Article  PubMed  Google Scholar 

  247. Otsuki, H. et al. Reversible and monitorable nephrotoxicity in rats by the novel potent transcriptional enhanced associate ___domain (TEAD) inhibitor, K-975. J. Toxicol. Sci. 49, 175–191 (2024).

    Article  CAS  PubMed  Google Scholar 

  248. Sun, Y. et al. Pharmacological blockade of TEAD-YAP reveals its therapeutic limitation in cancer cells. Nat. Commun. 13, 6744 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Akao, K. et al. TEAD-independent cell growth of Hippo-inactive mesothelioma cells: unveiling resistance to TEAD inhibitor K-975 through MYC signaling activation. Mol. Cancer Ther. 24, 709–719 (2025).

    Article  CAS  PubMed  Google Scholar 

  250. Paul, S. et al. Cooperation between the Hippo and MAPK pathway activation drives acquired resistance to TEAD inhibition. Nat. Commun. 16, 1743 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Nutsch, K. et al. Augmented acyl-CoA biosynthesis promotes resistance to TEAD palmitoylation site inhibition. ACS Chem. Biol. 20, 967–975 (2025).

    Article  CAS  PubMed  Google Scholar 

  252. White, S. M. et al. YAP/TAZ inhibition induces metabolic and signaling rewiring resulting in targetable vulnerabilities in NF2-deficient tumor cells. Dev. Cell 49, 425–443.e429 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Coggins, G. E. et al. YAP1 mediates resistance to MEK1/2 inhibition in neuroblastomas with hyperactivated RAS signaling. Cancer Res. 79, 6204–6214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Nilsson, M. B. et al. A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci. Transl. Med. 12, eaaz4589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Tsuji, T. et al. YAP1 mediates survival of ALK-rearranged lung cancer cells treated with alectinib via pro-apoptotic protein regulation. Nat. Commun. 11, 74 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Tang, T. T. & Post, L. Abstract B088: VT3989, the first-in-class and first-in-human TEAD auto-palmitoylation inhibitor, enhances the efficacy and durability of multiple targeted therapies of the MAPK and P13K/AKT/mTOR pathways. Mol. Cancer Ther. 22 (Suppl. 12), B088 (2023).

    Article  Google Scholar 

  257. Edwards, A. C. et al. TEAD inhibition overcomes YAP1/TAZ-driven primary and acquired resistance to KRASG12C inhibitors. Cancer Res. 83, 4112–4129 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Ogimoto, T. et al. Combination therapy with EGFR tyrosine kinase inhibitors and TEAD inhibitor increases tumor suppression effects in EGFR mutation–positive lung cancer. Mol. Cancer Ther. 23, 564–576 (2024).

    Article  CAS  PubMed  Google Scholar 

  259. Haderk, F. et al. Focal adhesion kinase-YAP signaling axis drives drug-tolerant persister cells and residual disease in lung cancer. Nat. Commun. 15, 3741 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Wasko, U. N. et al. Tumour-selective activity of RAS-GTP inhibition in pancreatic cancer. Nature 629, 927–936 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Schirmer, A. et al. 234 (PB222): Rational combination of pan-TEAD inhibitor SW-682 and MEK inhibitor mirdametinib in head and neck squamous cell carcinomas leads to synergistic response. Eur. J. Cancer 211, 114752 (2024).

    Article  Google Scholar 

  262. Chen, L. et al. 39 (PB027): TEAD inhibition by SW-682 potentiates activity of targeted therapies in NSCLC models. Eur. J. Cancer 211, 114567 (2024).

    Article  Google Scholar 

  263. Hu, L. et al. Discovery of a new class of reversible TEA ___domain transcription factor inhibitors with a novel binding mode. eLife 11, e80210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Liu, X. et al. In vitro and in vivo drug metabolism analysis of BPI-460372 - a covalent TEAD1/3/4 inhibitor. Curr. Drug Metab. 25, 754–768 (2025).

    Article  CAS  Google Scholar 

  265. Marshall, C. J. Ras effectors. Curr. Opin. Cell Biol. 8, 197 (1996).

    Article  CAS  PubMed  Google Scholar 

  266. Adachi, Y. et al. Scribble mis-localization induces adaptive resistance to KRAS G12C inhibitors through feedback activation of MAPK signaling mediated by YAP-induced MRAS. Nat. Cancer 4, 829–843 (2023).

    Article  CAS  PubMed  Google Scholar 

  267. Pascual, J. et al. Hippo reprograms the transcriptional response to Ras signaling. Dev. Cell 42, 667–680.e664 (2017).

    Article  CAS  PubMed  Google Scholar 

  268. Mitchell, K. A. et al. The JNK and Hippo pathways control epithelial integrity and prevent tumor initiation by regulating an overlapping transcriptome. Curr. Biol. 34, 3966–3982.e3967 (2024).

    Article  CAS  PubMed  Google Scholar 

  269. Stein, C. et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet. 11, e1005465 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Pham, T. H. et al. Machine-learning and chemicogenomics approach defines and predicts cross-talk of Hippo and MAPK pathways. Cancer Discov. 11, 778–793 (2021).

    Article  CAS  PubMed  Google Scholar 

  271. Park, J. et al. YAP and AP-1 cooperate to initiate pancreatic cancer development from ductal cells in mice. Cancer Res. 80, 4768–4779 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.F.H. holds a National Health and Medical Research Council of Australia Investigator Grant (APP1194467). The authors thank L. Post for comments on the manuscript and A. W. Konradi for drawing chemical structures.

Author information

Authors and Affiliations

Authors

Contributions

Both K.F.H. and T.T.T. analysed data, designed content, wrote and edited the manuscript, and reviewed and approved it before submission and publication.

Corresponding author

Correspondence to Kieran F. Harvey.

Ethics declarations

Competing interests

T.T.T. reports employment with Vivace Therapeutics and has equity interest in Vivace Therapeutics. K.F.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Xaralabos Varelas, Satu Juhila and Georg Halder for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov

ISRCTN: https://www.isrctn.com

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, K.F., Tang, T.T. Targeting the Hippo pathway in cancer. Nat Rev Drug Discov (2025). https://doi.org/10.1038/s41573-025-01234-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-025-01234-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing