Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amylin: emergent therapeutic opportunities in overweight, obesity and diabetes mellitus

Abstract

The identification of amylin as a glucoregulatory peptide hormone with roles in meal-ending satiation sparked a surge of experimental development, which culminated in the amylin mimetic drug pramlintide. Pramlintide was approved by the FDA in 2005 for the treatment of type 1 diabetes mellitus and insulin-requiring type 2 diabetes, and was also explored as a novel anti-obesity treatment. Despite this exciting potential, efforts to develop an amylin-based anti-obesity therapeutic stalled owing to challenges around dosage frequency, safety and formulation. Generally, anti-obesity therapies have displayed modest efficacy and mixed safety profiles, leaving a clear unmet clinical need that requires addressing. Advances in peptide chemistry have reinvigorated the amylin field by enabling the manufacture of effective new amylin-based molecules, resulting in therapeutics that are now on the cusp of approval. At present, there are growing concerns around GLP1 receptor agonist-based therapeutics, in particular their association with loss of lean body mass. Additionally, treatment of patients with overweight or obesity without associated comorbidities is increasingly common. The widespread pharmacotherapy of otherwise healthy populations with overweight or obesity with the goal of improving future health requires further regulatory and ethical consideration. This Review describes how amylin controls energy homeostasis and provides a current overview of amylin-based therapeutic development.

Key points

  • Amylin is a neuroendocrine peptide hormone, biosynthesized mainly in the pancreatic islet β-cells and co-secreted with insulin, that circulates in the blood and controls food intake, glucose homeostasis and energy metabolism.

  • There are at least three amylin receptors, AMY1, AMY2 and AMY3, each of which is composed of the calcitonin receptor bound to one of three corresponding receptor activity-modifying proteins.

  • Amylin acts as a natural satiety signal that suppresses appetite, delays gastric emptying and reduces food intake by activating specific amylin receptors present in many regions of the brain.

  • Treatment with amylin mimetics induces weight loss in humans and rodent models.

  • Amylin receptors are considered proven drug targets and amylin mimetics are emerging as novel treatments for overweight, obesity and diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human amylin and amylin receptors.
Fig. 2: Human amylin structure and oligomerization.
Fig. 3: Physiological effects of amylin.
Fig. 4: Approved and clinical candidate drugs targeting the amylin and calcitonin receptors.

Similar content being viewed by others

References

  1. Ong, K. L. et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021. Lancet 402, 203–234 (2023).

    Article  Google Scholar 

  2. Lingvay, I., Cohen, R. V., le Roux, C. W. & Sumithran, P. Obesity in adults. Lancet 404, 972–987 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Linge, J., Birkenfeld, A. L. & Neeland, I. J. Muscle mass and glucagon-like peptide-1 receptor agonists: adaptive or maladaptive response to weight loss? Circulation 150, 1288–1298 (2024).

    Article  PubMed  Google Scholar 

  4. Abdullah bin Ahmed, I. A comprehensive review on weight gain following discontinuation of glucagon‐like peptide‐1 receptor agonists for obesity. J. Obes. 2024, 8056440 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Westermark, P. et al. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl Acad. Sci. USA 84, 3881–3885 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fineman, M., Weyer, C., Maggs, D., Strobel, S. & Kolterman, O. The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm. Metab. Res. 34, 504–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, S. R. et al. Sustained weight loss following 12-month pramlintide treatment as an adjunct to lifestyle intervention in obesity. Diabetes Care 31, 1816–1823 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cooper, G. J. Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr. Rev. 15, 163–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, S. et al. The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet β cells. FASEB J. 28, 5083–5096 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Hay, D. L., Chen, S., Lutz, T. A., Parkes, D. G. & Roth, J. D. Amylin: pharmacology, physiology, and clinical potential. Pharmacol. Rev. 67, 564–600 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Younk, L. M., Mikeladze, M. & Davis, S. N. Pramlintide and the treatment of diabetes: a review of the data since its introduction. Expert. Opin. Pharmacother. 12, 1439–1451 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Aronne, L. et al. Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: a phase 2, randomized, placebo-controlled, dose-escalation study. J. Clin. Endocrinol. Metab. 92, 2977–2983 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Lau, D. C. et al. Once-weekly cagrilintide for weight management in people with overweight and obesity: a multicentre, randomised, double-blind, placebo-controlled and active-controlled, dose-finding phase 2 trial. Lancet 398, 2160–2172 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Enebo, L. B. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 2·4 mg for weight management: a randomised, controlled, phase 1b trial. Lancet 397, 1736–1748 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Hay, D. L., Garelja, M. L., Poyner, D. R. & Walker, C. S. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharmacol. 175, 3–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Katafuchi, T., Yasue, H., Osaki, T. & Minamino, N. Calcitonin receptor-stimulating peptide: its evolutionary and functional relationship with calcitonin/calcitonin gene-related peptide based on gene structure. Peptides 30, 1753–1762 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Roberts, A. et al. Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc. Natl Acad. Sci. USA 86, 9662–9666 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cooper, G. J. et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl Acad. Sci. USA 84, 8628–8632 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Westermark, P., Wernstedt, C., O’Brien, T. D., Hayden, D. W. & Johnson, K. H. Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am. J. Pathol. 127, 414–417 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferrier, G. J. M. et al. Expression of the rat amylin (IAPP/DAP) gene. J. Mol. Endocrinol. 3, R1–R4 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Gebre-Medhin, S., Mulder, H., Zhang, Y., Sundler, F. & Betsholtz, C. Reduced nociceptive behavior in islet amyloid polypeptide (amylin) knockout mice. Brain Res. Mol. Brain Res. 63, 180–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Dobolyi, A. Central amylin expression and its induction in rat dams. J. Neurochem. 111, 1490–1500 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Rees, T. A. et al. Calcitonin receptor, calcitonin gene-related peptide and amylin distribution in C1/2 dorsal root ganglia. J. Headache Pain. 25, 36 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hendrikse, E. R., Bower, R. L., Hay, D. L. & Walker, C. S. Molecular studies of CGRP and the CGRP family of peptides in the central nervous system. Cephalalgia 39, 403–419 (2019).

    Article  PubMed  Google Scholar 

  25. Hartter, E. et al. Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia 34, 52–54 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Moore, C. X. & Cooper, G. J. Co-secretion of amylin and insulin from cultured islet β-cells: modulation by nutrient secretagogues, islet hormones and hypoglycemic agents. Biochem. Biophys. Res. Commun. 179, 1–9 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Banks, W. A. & Kastin, A. J. Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides 19, 883–889 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Banks, W. A., Kastin, A. J., Maness, L. M., Huang, W. & Jaspan, J. B. Permeability of the blood-brain barrier to amylin. Life Sci. 57, 1993–2001 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Leckstrom, A., Bjorklund, K., Permert, J., Larsson, R. & Westermark, P. Renal elimination of islet amyloid polypeptide. Biochem. Biophys. Res. Commun. 239, 265–268 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Christopoulos, G. et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 56, 235–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Muff, R., Buhlmann, N., Fischer, J. A. & Born, W. An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology 140, 2924–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Walker, C. S. et al. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann. Clin. Transl. Neurol. 2, 595–608 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi, T. et al. Receptor activity-modifying protein-dependent impairment of calcitonin receptor splice variant Δ(1–47)hCT(a) function. Br. J. Pharmacol. 168, 644–657 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tilakaratne, N., Christopoulos, G., Zumpe, E. T., Foord, S. M. & Sexton, P. M. Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J. Pharmacol. Exp. Ther. 294, 61–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Bailey, R. J. et al. Pharmacological characterization of rat amylin receptors: implications for the identification of amylin receptor subtypes. Br. J. Pharmacol. 166, 151–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garelja, M. L., Walker, C. S. & Hay, D. L. CGRP receptor antagonists for migraine. Are they also AMY1 receptor antagonists? Br. J. Pharmacol. 179, 454–459 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Liberini, C. G. et al. Amylin receptor components and the leptin receptor are co-expressed in single rat area postrema neurons. Eur. J. Neurosci. 43, 653–661 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Le Foll, C. et al. Amylin-induced central IL-6 production enhances ventromedial hypothalamic leptin signaling. Diabetes 64, 1621–1631 (2015).

    Article  PubMed  Google Scholar 

  40. Turek, V. F. et al. Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151, 143–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Hay, D. L. et al. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins. Biochem. Soc. Trans. 44, 568–573 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Cegla, J. et al. RAMP2 influences glucagon receptor pharmacology via trafficking and signaling. Endocrinology 158, 2680–2693 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar, K. K. et al. Negative allosteric modulation of the glucagon receptor by RAMP2. Cell 186, 1465–1477 (2023).

    Article  PubMed Central  Google Scholar 

  44. Shao, L. et al. Modulating effects of RAMPs on signaling profiles of the glucagon receptor family. Acta Pharm. Sin. B 12, 637–650 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Dackor, R., Fritz-Six, K., Smithies, O. & Caron, K. Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age. J. Biol. Chem. 282, 18094–18099 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Hosono, K. et al. Deletion of RAMP1 signaling enhances diet-induced obesity and fat absorption via intestinal lacteals in mice. In Vivo 38, 160–173 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Coester, B. et al. RAMP1 and RAMP3 differentially control amylin’s effects on food intake, glucose and energy balance in male and female mice. Neuroscience 447, 74–93 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Fernandes-Santos, C. et al. Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology 154, 2481–2488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, Z. et al. Neuronal receptor activity-modifying protein 1 promotes energy expenditure in mice. Diabetes 60, 1063–1071 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arrigoni, S. et al. A selective role for receptor activity-modifying proteins in subchronic action of the amylin selective receptor agonist NN1213 compared with salmon calcitonin on body weight and food intake in male mice. Eur. J. Neurosci. 54, 4863–4876 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu, T. et al. RAMP3 deficiency enhances postmenopausal obesity and metabolic disorders. Peptides 110, 10–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Westermark, P., Andersson, A. & Westermark, G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev. 91, 795–826 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Lutz, T. A. The role of amylin in the control of energy homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1475–R1484 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Paxinos, G. et al. In vitro autoradiographic localization of calcitonin and amylin binding sites in monkey brain. J. Chem. Neuroanat. 27, 217–236 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Sexton, P. M., Paxinos, G., Kenney, M. A., Wookey, P. J. & Beaumont, K. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 62, 553–567 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Beaumont, K., Kenney, M. A., Young, A. A. & Rink, T. J. High affinity amylin binding sites in rat brain. Mol. Pharmacol. 44, 493–497 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Becskei, C., Riediger, T., Zund, D., Wookey, P. & Lutz, T. A. Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res. 1030, 221–233 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Oliver, K. R. et al. Cloning, characterization and central nervous system distribution of receptor activity modifying proteins in the rat. Eur. J. Neurosci. 14, 618–628 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Skofitsch, G., Wimalawansa, S. J., Jacobowitz, D. M. & Gubisch, W. Comparative immunohistochemical distribution of amylin-like and calcitonin gene related peptide like immunoreactivity in the rat central nervous system. Can. J. Physiol. Pharmacol. 73, 945–956 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Hendrikse, E. R. et al. Calcitonin receptor antibody validation and expression in the rodent brain. Cephalalgia 42, 815–826 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Van Dyken, P. & Lacoste, B. Impact of metabolic syndrome on neuroinflammation and the blood–brain barrier. Front. Neurosci. 12, 930 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Barth, S. W., Riediger, T., Lutz, T. A. & Rechkemmer, G. Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res. 997, 97–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Clarke, G. S., Page, A. J. & Eldeghaidy, S. The gut–brain axis in appetite, satiety, food intake, and eating behavior: insights from animal models and human studies. Pharmacol. Res. Perspect. 12, e70027 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Young, A., Gedulin, B., Vine, W., Percy, A. & Rink, T. Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin. Diabetologia 38, 642–648 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Gedulin, B. R. & Young, A. A. Hypoglycemia overrides amylin-mediated regulation of gastric emptying in rats. Diabetes 47, 93–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Mack, C. M. et al. Davalintide (AC2307), a novel amylin-mimetic peptide: enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int. J. Obes. 34, 385–395 (2010).

    Article  CAS  Google Scholar 

  67. Mollet, A., Gilg, S., Riediger, T. & Lutz, T. A. Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol. Behav. 81, 149–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Chapman, I. et al. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia 48, 838–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Chapman, I. et al. Low‐dose pramlintide reduced food intake and meal duration in healthy, normal‐weight subjects. Obesity 15, 1179–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Smith, S. R. et al. Pramlintide treatment reduces 24-h caloric intake and meal sizes and improves control of eating in obese subjects: a 6-wk translational research study. Am. J. Physiol. Endocrinol. Metab. 293, E620–E627 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Lutz, T., Del Prete, E. & Scharrer, E. Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol. Behav. 55, 891–895 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Morley, J. E., Suarez, M. D., Mattamal, M. & Flood, J. F. Amylin and food intake in mice: effects on motivation to eat and mechanism of action. Pharmacol. Biochem. Behav. 56, 123–129 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Riediger, T., Rauch, M. & Schmid, H. A. Actions of amylin on subfornical organ neurons and on drinking behavior in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R514–R521 (1999).

    Article  CAS  Google Scholar 

  74. Baldo, B. A. & Kelley, A. E. Amylin infusion into rat nucleus accumbens potently depresses motor activity and ingestive behavior. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1232–R1242 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Mietlicki-Baase, E. G. et al. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology 38, 1685–1697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mietlicki-Baase, E. G., Olivos, D. R., Jeffrey, B. A. & Hayes, M. R. Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am. J. Physiol. Endocrinol. Metab. 308, E1116–E1122 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Szabó, É. R., Cservenák, M. & Dobolyi, A. Amylin is a novel neuropeptide with potential maternal functions in the rat. FASEB J. 26, 272–281 (2012).

    Article  PubMed  Google Scholar 

  78. Trevaskis, J. L. et al. Interaction of leptin and amylin in the long‐term maintenance of weight loss in diet‐induced obese rats. Obesity 18, 21–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Aronoff, S. L., Berkowitz, K., Shreiner, B. & Want, L. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr. 17, 183–190 (2004).

    Article  Google Scholar 

  80. Honegger, M., Lutz, T. A. & Boyle, C. N. Hypoglycemia attenuates acute amylin-induced reduction of food intake in male rats. Physiol. Behav. 237, 113435 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Leighton, B. & Cooper, G. J. The role of amylin in the insulin resistance of non-insulin-dependent diabetes mellitus. Trends Biochem. Sci. 15, 295–299 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Gedulin, B. R., Jodka, C. M., Herrmann, K. & Young, A. A. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul. Pept. 137, 121–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Silvestre, R. A., Peiró, E., Dégano, P., Miralles, P. & Marco, J. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat pancreas. Regul. Pept. 31, 23–31 (1990).

    Article  CAS  PubMed  Google Scholar 

  84. Silvestre, R. et al. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am. J. Physiol. Endocrinol. Metab. 280, E443–E449 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Molina, J. M., Cooper, G. J., Leighton, B. & Olefsky, J. M. Induction of insulin resistance in vivo by amylin and calcitonin gene-related peptide. Diabetes 39, 260–265 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Nishimura, S. et al. Lack of effect of islet amyloid polypeptide on hepatic glucose output in the in situ-perfused rat liver. Metabolism 41, 431–434 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Sanke, T. et al. Plasma islet amyloid polypeptide (Amylin) levels and their responses to oral glucose in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 34, 129–132 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Young, A. A., Wang, M.-W. & Cooper, G. J. Amylin injection causes elevated plasma lactate and glucose in the rat. FEBS Lett. 291, 101–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, M.-W., Carlo, P., Rink, T. J. & Young, A. A. Amylin is more potent and more effective than glucagon in raising plasma glucose concentration in fasted, anesthetized rats. Biochem. Biophys. Res. Commun. 181, 1288–1293 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Young, D., Deems, R., Deacon, R., McIntosh, R. & Foley, J. Effects of amylin on glucose metabolism and glycogenolysis in vivo and in vitro. Am. J. Physiol. Endocrinol. Metab. 259, E457 (1990).

    Article  CAS  Google Scholar 

  91. Cori, C. F. Mammalian carbohydrate metabolism. Physiol. Rev. 11, 143–275 (1931).

    Article  CAS  Google Scholar 

  92. Ellingwood, S. S. & Cheng, A. Biochemical and clinical aspects of glycogen storage diseases. J. Endocrinol. 238, R131–R141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Leighton, B. & Cooper, G. J. Pancreatic amylin and calcitonin gene-related peptide cause resistance to insulin in skeletal muscle in vitro. Nature 335, 632–635 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Kreutter, D. K. et al. Amylin and CGRP induce insulin resistance via a receptor distinct from cAMP-coupled CGRP receptor. Am. J. Physiol. Endocrinol. Metab. 264, E606–E613 (1993).

    Article  CAS  Google Scholar 

  95. Leighton, B. & Foot, E. The effects of amylin on carbohydrate metabolism in skeletal muscle in vitro and in vivo. Biochem. J. 269, 19–23 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hothesall, J. S., Muirhead, R. P. & Wimalawansa, S. The effect of amylin and calcitonin gene-related peptide on insulin-stimulated glucose transport in the diaphragm. Biochem. Biophys. Res. Commun. 169, 451–454 (1990).

    Article  Google Scholar 

  97. Danaher, R. N. et al. Evidence that α-calcitonin gene-related peptide is a neurohormone that controls systemic lipid availability and utilization. Endocrinology 149, 154–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Ye, J.-M. et al. Evidence that amylin stimulates lipolysis in vivo: a possible mediator of induced insulin resistance. Am. J. Physiol. Endocrinol. Metab. 280, E562–E569 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Chantry, A., Leighton, B. & Day, A. J. Cross-reactivity of amylin with calcitonin-gene-related peptide binding sites in rat liver and skeletal muscle membranes. Biochem. J. 277, 139–143 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhu, G., Dudley, D. T. & Saltiel, A. R. Amylin increases cyclic AMP formation in L6 myocytes through calcitonin gene-related peptide receptors. Biochem. Biophys. Res. Commun. 177, 771–776 (1991).

    Article  CAS  PubMed  Google Scholar 

  101. Gudzune, K. A. & Kushner, R. F. Medications for obesity: a review. JAMA 332, 571–584 (2024).

    Article  CAS  PubMed  Google Scholar 

  102. Williams, D. M., Nawaz, A. & Evans, M. Drug therapy in obesity: a review of current and emerging treatments. Diabetes Ther. 11, 1199–1216 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Cummings, D. E., Overduin, J. & Foster-Schubert, K. E. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J. Clin. Endocrinol. Metab. 89, 2608–2615 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Holst, J. J. GLP-1 physiology in obesity and development of incretin-based drugs for chronic weight management. Nat. Metab. 6, 1866–1885 (2024).

    Article  CAS  PubMed  Google Scholar 

  105. Drucker, D. J. Discovery of GLP-1-based drugs for the treatment of obesity. N. Engl. J. Med. 392, 612–615 (2025).

    Article  PubMed  Google Scholar 

  106. McGowan, B. M. et al. Efficacy and safety of once-weekly semaglutide 2·4 mg versus placebo in people with obesity and prediabetes (STEP 10): a randomised, double-blind, placebo-controlled, multicentre phase 3 trial. Lancet Diabetes Endocrinol. 12, 631–642 (2024).

    Article  CAS  PubMed  Google Scholar 

  107. Guglielmi, G. The weight-loss drugs being tested in 2025: will they beat Ozempic? Nature 638, 591–592 (2025).

    Article  CAS  PubMed  Google Scholar 

  108. Sargeant, J. A. et al. A review of the effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors on lean body mass in humans. Endocrinol. Metab. 34, 247–262 (2019).

    Article  CAS  Google Scholar 

  109. Ryan, G. J., Jobe, L. J. & Martin, R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin. Ther. 27, 1500–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Roth, J. D., Hughes, H., Kendall, E., Baron, A. D. & Anderson, C. M. Antiobesity effects of the β-cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 147, 5855–5864 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Gydesen, S. et al. Optimization of tolerability and efficacy of the novel dual amylin and calcitonin receptor agonist KBP-089 through dose escalation and combination with a GLP-1 analog. Am. J. Physiol. Endocrinol. Metab. 313, E598–E607 (2017).

    Article  PubMed  Google Scholar 

  112. Srinivasan, A., Wong, F. K. & Karponis, D. Calcitonin: a useful old friend. J. Musculoskelet. Neuronal Interact. 20, 600–609 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wüster, C. et al. Superior local tolerability of human versus salmon calcitonin preparations in young healthy volunteers. Eur. J. Clin. Pharmacol. 41, 211–215 (1991).

    Article  PubMed  Google Scholar 

  114. Reginster, J. Y., Gaspar, S., Deroisy, R., Zegels, B. & Franchimont, P. Prevention of osteoporosis with nasal salmon calcitonin: effect of anti-salmon calcitonin antibody formation. Osteoporos. Int. 3, 261–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Zakariassen, H. L., John, L. M. & Lutz, T. A. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic. Clin. Pharmacol. Toxicol. 127, 163–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Jonderko, G., Gołąb, T. & Jonderko, K. Effect of calcitonin on gastric emptying. Digestion 40, 191–196 (1988).

    Article  CAS  PubMed  Google Scholar 

  117. Jonderko, K., Jonderko, G. & Golab, T. Effect of calcitonin on gastric emptying and on serum insulin and gastrin concentrations after ingestion of a mixed solid–liquid meal in humans. J. Clin. Gastroenterol. 12, 22–28 (1990).

    Article  CAS  PubMed  Google Scholar 

  118. Perlow, M. J., Freed, W. J., Carman, J. S. & Wyatt, R. J. Calcitonin reduces feeding in man, monkey and rat. Pharmacol. Biochem. Behav. 12, 609–612 (1980).

    Article  CAS  PubMed  Google Scholar 

  119. Gingell, J. J., Burns, E. R. & Hay, D. L. Activity of pramlintide, rat and human amylin but not Aβ1-42 at human amylin receptors. Endocrinology 155, 21–26 (2014).

    Article  PubMed  Google Scholar 

  120. Center for Drug Evaluation and Research. Symlin® (pramlintide acetate) injection: approved labeling (application no. 021332). FDA www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21-332_Symlin%20Injection_prntlbl.pdf (2005).

  121. Ravussin, E. et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity 17, 1736–1743 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Chan, J. L. et al. Immunogenicity associated with metreleptin treatment in patients with obesity or lipodystrophy. Clin. Endocrinol. 85, 137–149 (2016).

    Article  CAS  Google Scholar 

  123. Roth, J. D., Erickson, M. R., Chen, S. & Parkes, D. G. GLP‐1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities. Br. J. Pharmacol. 166, 121–136 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mack, C. M. et al. Glucoregulatory effects and prolonged duration of action of davalintide: a novel amylinomimetic peptide. Diabetes Obes. Metab. 13, 1105–1113 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Biocentury. Amylin, Takeda discontinue davalintide. Biocentury www.biocentury.com/article/36923/amylin-takeda-discontinue-davalintide (2010).

  126. Gydesen, S. et al. KBP-088, a novel DACRA with prolonged receptor activation, is superior to davalintide in terms of efficacy on body weight. Am. J. Physiol. Endocrinol. Metab. 310, E821–E827 (2016).

    Article  PubMed  Google Scholar 

  127. Gydesen, S. et al. A novel dual amylin and calcitonin receptor agonist, KBP-089, induces weight loss through a reduction in fat, but not lean mass, while improving food preference. Br. J. Pharmacol. 174, 591–602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mohamed, K. E. et al. The dual amylin and calcitonin receptor agonist KBP-336 elicits a unique combination of weight loss, antinociception and bone protection – a novel disease-modifying osteoarthritis drug. Arthritis Res. Ther. 26, 129 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Andreassen, K. V. et al. KBP-066A, a long-acting dual amylin and calcitonin receptor agonist, induces weight loss and improves glycemic control in obese and diabetic rats. Mol. Metab. 53, 101282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Andreassen, K. V. et al. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats. Am. J. Physiol. Endocrinol. Metab. 307, E24–E33 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Melson, E., Ashraf, U., Papamargaritis, D. & Davies, M. J. What is the pipeline for future medications for obesity? Int. J. Obes. 49, 433–451 (2025).

    Article  CAS  Google Scholar 

  132. Manalac, T. AstraZeneca bolsters obesity pipeline with promising early data for candidates. BioSpace www.biospace.com/drug-development/astrazeneca-bolsters-obesity-pipeline-with-promising-early-data-for-candidates (2024).

  133. Murray, A. et al. Amylin receptor (hAMY3R) agonists with improved chemical stability. International Patent WO2024003359A1 (2024).

  134. World Health Organization. International nonproprietary names for pharmaceutical substances. WHO Drug Inf. 37, 436–437 (2023).

    Google Scholar 

  135. American Medical Association. Statement on a nonproprietary name adopted by the USAN Council: Eloralintide. AMA searchusan.ama-assn.org/usan/documentDownload?uri=/unstructured/binary/usan/eloralintide.pdf (2024).

  136. Fletcher, M. M. et al. AM833 is a novel agonist of calcitonin family G protein-coupled receptors: pharmacological comparison with six selective and nonselective agonists. J. Pharmacol. Exp. Ther. 377, 417–440 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Kruse, T. et al. Development of cagrilintide, a long-acting amylin analogue. J. Med. Chem. 64, 11183–11194 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Larsen, A. T. et al. Does receptor balance matter? – comparing the efficacies of the dual amylin and calcitonin receptor agonists cagrilintide and KBP-336 on metabolic parameters in preclinical models. Biomed. Pharmacother. 156, 113842 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. D’Ascanio, A. M., Mullally, J. A. & Frishman, W. H. Cagrilintide: a long-acting amylin analog for the treatment of obesity. Cardiol. Rev. 32, 83–90 (2024).

    Article  PubMed  Google Scholar 

  140. Henney, A. E., Wilding, J. P., Alam, U. & Cuthbertson, D. J. Obesity pharmacotherapy in older adults: a narrative review of evidence. Int. J. Obes. 49, 369–380 (2025).

    Article  Google Scholar 

  141. Frias, J. P. et al. Efficacy and safety of co-administered once-weekly cagrilintide 2·4 mg with once-weekly semaglutide 2·4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet 402, 720–730 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Kruse, T. H. et al. Co-agonists of the Glp-1 and amylin receptors. US Patent US20230331803A1 (2023).

  143. Bower, R. L. et al. Molecular signature for receptor engagement in the metabolic peptide hormone amylin. ACS Pharmacol. Transl. Sci. 1, 32–49 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Trevaskis, J. L. et al. Improved glucose control and reduced body weight in rodents with dual mechanism of action peptide hybrids. PLoS ONE 8, e78154 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sun, C. et al. Bifunctional PEGylated exenatide-amylinomimetic hybrids to treat metabolic disorders: an example of long-acting dual hormonal therapeutics. J. Med. Chem. 56, 9328–9341 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Haataja, L., Gurlo, T., Huang, C. J. & Butler, P. C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev. 29, 303–316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Noh, D., Bower, R. L., Hay, D. L., Zhyvoloup, A. & Raleigh, D. P. Analysis of amylin consensus sequences suggests that human amylin is not optimized to minimize amyloid formation and provides clues to factors that modulate amyloidogenicity. ACS Chem. Biol. 15, 1408–1416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Westermark, P., Engstrom, U., Johnson, K. H., Westermark, G. T. & Betsholtz, C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl Acad. Sci. USA 87, 5036–5040 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Smaoui, M. R. & Waldispuhl, J. Complete characterization of the mutation landscape reveals the effect on amylin stability and amyloidogenicity. Proteins 83, 1014–1026 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Sakagashira, S. et al. S20G mutant amylin exhibits increased in vitro amyloidogenicity and increased intracellular cytotoxicity compared to wild-type amylin. Am. J. Pathol. 157, 2101–2109 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, S. et al. The islet amyloid polypeptide (amylin) gene S20G mutation in Chinese subjects: evidence for associations with type 2 diabetes and cholesterol levels. Clin. Endocrinol. 54, 541–546 (2001).

    Article  CAS  Google Scholar 

  152. Mendes, W. S., Franco, O. L., Alencar, S. A. & Porto, W. F. Structural effects driven by rare point mutations in amylin hormone, the type II diabetes-associated peptide. Biochim. Biophys. Acta Gen. Subj. 1865, 129935 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Wiltzius, J. J. W., Sievers, S. A., Sawaya, M. R. & Eisenberg, D. Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci. 18, 1521–1530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Poa, N., Cooper, G. & Edgar, P. Amylin gene promoter mutations predispose to type 2 diabetes in New Zealand Maori. Diabetologia 46, 574–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

    Article  PubMed Central  Google Scholar 

  156. Marmentini, C., Branco, R. C. S., Boschero, A. C. & Kurauti, M. A. Islet amyloid toxicity: from genesis to counteracting mechanisms. J. Cell Physiol. 237, 1119–1142 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Zhang, S., Liu, H., Yu, H. & Cooper, G. J. Fas-associated death receptor signaling evoked by human amylin in islet beta-cells. Diabetes 57, 348–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Cooper, G., Aitken, J. & Zhang, S. Is type 2 diabetes an amyloidosis and does it really matter (to patients)? Diabetologia 53, 1011–1016 (2010).

    Article  CAS  PubMed  Google Scholar 

  159. Zhang, S., Liu, J., Dragunow, M. & Cooper, G. J. Fibrillogenic amylin evokes islet β-cell apoptosis through linked activation of a caspase cascade and JNK1. J. Biol. Chem. 278, 52810–52819 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Abedini, A. et al. RAGE binds preamyloid IAPP intermediates and mediates pancreatic beta cell proteotoxicity. J. Clin. Invest. 128, 682–698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Roesti, E. S. et al. Vaccination against amyloidogenic aggregates in pancreatic islets prevents development of type 2 diabetes mellitus. Vaccines 8, 116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vogt, A. C. S. et al. Anti-IAPP monoclonal antibody improves clinical symptoms in a mouse model of type 2 diabetes. Vaccines 9, 1316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wirth, F. et al. A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models. Nat. Commun. 14, 6294 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bram, Y. et al. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Sci. Rep. 4, 4267 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Wong, W. P. et al. Spontaneous diabetes in hemizygous human amylin transgenic mice that developed neither islet amyloid nor peripheral insulin resistance. Diabetes 57, 2737–2744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Verchere, C. B., D’Alessio, D. A., Wang, S., Andrikopoulos, S. & Kahn, S. E. Transgenic overproduction of islet amyloid polypeptide (amylin) is not sufficient for islet amyloid formation. Horm. Metab. Res. 29, 311–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  167. van Hulst, K. L. et al. Biologically active human islet amyloid polypeptide/amylin in transgenic mice. Eur. J. Endocrinol. 136, 107–113 (1997).

    Article  PubMed  Google Scholar 

  168. Yagui, K. et al. Formation of islet amyloid fibrils in beta-secretory granules of transgenic mice expressing human islet amyloid polypeptide/amylin. Eur. J. Endocrinol. 132, 487–496 (1995).

    Article  CAS  PubMed  Google Scholar 

  169. Aitken, J. F. et al. Tetracycline treatment retards the onset and slows the progression of diabetes in human amylin/islet amyloid polypeptide transgenic mice. Diabetes 59, 161–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Uhlen, M. et al. A proposal for validation of antibodies. Nat. Methods 13, 823–827 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rees, T. A., Hendrikse, E. R., Hay, D. L. & Walker, C. S. Beyond CGRP: the calcitonin peptide family as targets for migraine and pain. Br. J. Pharmacol. 179, 381–399 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Russo, A. F. Overview of neuropeptides: awakening the senses? Headache 57, 37–46 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Rees, T. A., Hay, D. L. & Walker, C. S. Amylin antibodies frequently display cross-reactivity with CGRP: characterization of eight amylin antibodies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 320, R697–R703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ghanizada, H. et al. Amylin analog pramlintide induces migraine-like attacks in patients. Ann. Neurol. 89, 1157–1171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Konarkowska, B., Aitken, J. F., Kistler, J., Zhang, S. & Cooper, G. J. The aggregation potential of human amylin determines its cytotoxicity towards islet beta-cells. FEBS J. 273, 3614–3624 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J. & Selkoe, D. J. Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans. 30, 552–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Ke, P. C. et al. Implications of peptide assemblies in amyloid diseases. Chem. Soc. Rev. 46, 6492–6531 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Oskarsson, M. E. et al. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. Am. J. Pathol. 185, 834–846 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Jackson, K. et al. Amylin deposition in the brain: a second amyloid in Alzheimer disease? Ann. Neurol. 74, 517–526 (2013).

    Article  CAS  PubMed  Google Scholar 

  180. Libard, S. & Alafuzoff, I. Is islet amyloid polypeptide indeed expressed in the human brain? Neuropathol. Appl. Neurobiol. 49, e12917 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Hendrikse, E. R. et al. Characterization of antibodies against receptor activity-modifying protein 1 (RAMP1): a cautionary tale. Int. J. Mol. Sci. 23, 16035 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Eftekhari, S. et al. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience 169, 683–696 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the New Zealand Ministry of Business, Innovation & Employment Hīkina Whakatutuki (UOAX1809; UOA24102).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. G.J.S.C., C.S.W., J.F.A. and S.Z. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Garth J. S. Cooper.

Ethics declarations

Competing interests

C.S.W. has received research support from AbbVie Inc. The other authors declare no other competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Thomas Lutz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, C.S., Aitken, J.F., Vazhoor Amarsingh, G. et al. Amylin: emergent therapeutic opportunities in overweight, obesity and diabetes mellitus. Nat Rev Endocrinol (2025). https://doi.org/10.1038/s41574-025-01125-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-025-01125-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research