Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HIV-1 and human genetic variation

Abstract

Over the past four decades, research on the natural history of HIV infection has described how HIV wreaks havoc on human immunity and causes AIDS. HIV host genomic research, which aims to understand how human genetic variation affects our response to HIV infection, has progressed from early candidate gene studies to recent multi-omic efforts, benefiting from spectacular advances in sequencing technology and data science. In addition to invading cells and co-opting the host machinery for replication, HIV also stably integrates into our own genome. The study of the complex interactions between the human and retroviral genomes has improved our understanding of pathogenic mechanisms and suggested novel preventive and therapeutic approaches against HIV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the HIV life cycle and the HLA-mediated host response.
Fig. 2: Classical and non-classical effects of HLA class I on HIV suppression.
Fig. 3: CCR5 expression modifies HIV progression.
Fig. 4: Detecting genomic signatures of host–pathogen interactions in matched host and virus samples.
Fig. 5: Antiretroviral drugs target multiple stages of the HIV life cycle.

Similar content being viewed by others

References

  1. Friedland, G. H. & Klein, R. S. Transmission of the human immunodeficiency virus. N. Engl. J. Med. 317, 1125–1135 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Kulkarni, P. S., Butera, S. T. & Duerr, A. C. Resistance to HIV-1 infection: lessons learned from studies of highly exposed persistently seronegative (HEPS) individuals. AIDS Rev. 5, 87–103 (2003).

    PubMed  Google Scholar 

  3. Horton, R. E., McLaren, P. J., Fowke, K., Kimani, J. & Ball, T. B. Cohorts for the study of HIV-1-exposed but uninfected individuals: benefits and limitations. J. Infect. Dis. 202 (Suppl. 3), S377–S381 (2010).

    Article  PubMed  Google Scholar 

  4. Sabin, C. A. & Lundgren, J. D. The natural history of HIV infection. Curr. Opin. Hiv. AIDS 8, 311–317 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Chen, B. Molecular mechanism of HIV-1 entry. Trends Microbiol. 27, 878–891 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Letvin, N. L. & Walker, B. D. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat. Med. 9, 861–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Dufour, C., Gantner, P., Fromentin, R. & Chomont, N. The multifaceted nature of HIV latency. J. Clin. Invest. 130, 3381–3390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naranbhai, V. & Carrington, M. Host genetic variation and HIV disease: from mapping to mechanism. Immunogenetics 69, 489–498 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. An, P. et al. Regulatory polymorphisms in the cyclophilin A gene, PPIA, accelerate progression to AIDS. PLoS Pathog. 3, e88 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bashirova, A. A. et al. Consistent effects of TSG101 genetic variability on multiple outcomes of exposure to human immunodeficiency virus type 1. J. Virol. 80, 6757–6763 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boniotto, M. et al. Polymorphisms in the MBL2 promoter correlated with risk of HIV-1 vertical transmission and AIDS progression. Genes Immun. 1, 346–348 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Bochud, P.-Y. et al. Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS 21, 441–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. An, P. et al. APOBEC3G genetic variants and their influence on the progression to AIDS. J. Virol. 78, 11070–11076 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Javanbakht, H. et al. Effects of human TRIM5alpha polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection. Virology 354, 15–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Fellay, J. et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet. 5, e1000791 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. International HIV Controllers Studyet al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330, 1551–1557 (2010).

    Article  CAS  Google Scholar 

  18. McLaren, P. J. et al. Association study of common genetic variants and HIV-1 acquisition in 6,300 infected cases and 7,200 controls. PLoS Pathog. 9, e1003515 (2013). This GWAS of HIV-1 acquisition showed no evidence for association outside of CCR5 including lack of replication of 22 loci previously claimed to impact acquisition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE. Science 273, 1856–1862 (1996). We believe this study to be the first description of host genetic resistance to an infectious disease observed in people homozygous for a loss of function mutation in CCR5 (previously known as CKR5).

    Article  CAS  PubMed  Google Scholar 

  20. Huang, Y. et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat. Med. 2, 1240–1243 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Kaslow, R. A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Das, S., Abecasis, G. R. & Browning, B. L. Genotype imputation from large reference panels. Annu. Rev. Genomics Hum. Genet. 19, 73–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Fellay, J. et al. A whole-genome association study of major determinants for host control of HIV-1. Science 317, 944–947 (2007). In what is considered to be the first GWAS of an infectious disease phenotype, the authors demonstrate the large impact of genetic variation in the HLA region on determining HIV spVL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mellors, J. W. et al. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann. Intern. Med. 122, 573–579 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Quinn, T. C. et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N. Engl. J. Med. 342, 921–929 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Pelak, K. et al. Host determinants of HIV-1 control in African Americans. J. Infect. Dis. 201, 1141–1149 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Lingappa, J. R. et al. Genomewide association study for determinants of HIV-1 acquisition and viral set point in HIV-1 serodiscordant couples with quantified virus exposure. PLoS ONE 6, e28632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo, M. et al. A genetic polymorphism of FREM1 is associated with resistance against HIV infection in the Pumwani Sex Worker Cohort. J. Virol. 86, 11899–11905 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mclaren, P. J. et al. Fine-mapping classical HLA variation associated with durable host control of HIV-1 infection in African Americans. Hum. Mol. Genet. 21, 4334–4347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McLaren, P. J. et al. Evaluating the impact of functional genetic variation on HIV-1 control. J. Infect. Dis. 216, 1063–1069 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lane, J. et al. A genome-wide association study of resistance to HIV infection in highly exposed uninfected individuals with hemophilia A. Hum. Mol. Genet. 22, 1903–1910 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mackelprang, R. D. et al. Whole genome sequencing of extreme phenotypes identifies variants in CD101 and UBE2V1 associated with increased risk of sexually acquired HIV-1. PLoS Pathog. 13, e1006703 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bouloc, A., Bagot, M., Delaire, S., Bensussan, A. & Boumsell, L. Triggering CD101 molecule on human cutaneous dendritic cells inhibits T cell proliferation via IL-10 production. Eur. J. Immunol. 30, 3132–3139 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Xia, Z.-P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pertel, T. et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472, 361–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Powell, T. R. et al. The behavioral, cellular and immune mediators of HIV-1 acquisition: new insights from population genetics. Sci. Rep. 10, 3304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrovski, S. et al. Common human genetic variants and HIV-1 susceptibility: a genome-wide survey in a homogeneous African population. AIDS 25, 513–518 (2011).

    Article  PubMed  Google Scholar 

  41. Shiina, T., Hosomichi, K., Inoko, H. & Kulski, J. K. The HLA genomic loci map: expression, interaction, diversity and disease. J. Hum. Genet. 54, 15–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Horton, R. et al. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 889–899 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. de Bakker, P. I. W. & Raychaudhuri, S. Interrogating the major histocompatibility complex with high-throughput genomics. Hum. Mol. Genet. 21, 1–8 (2012).

    Article  CAS  Google Scholar 

  44. Kennedy, A. E., Ozbek, U. & Dorak, M. T. What has GWAS done for HLA and disease associations? Int. J. Immunogenet. 44, 195–211 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Venkataraman, G. R. et al. Pervasive additive and non-additive effects within the HLA region contribute to disease risk in the UK Biobank. Preprint at bioRxiv https://doi.org/10.1101/2020.05.28.119669 (2020).

    Article  Google Scholar 

  46. Sakaue, S. et al. A global atlas of genetic associations of 220 deep phenotypes. Preprint at medRxiv https://doi.org/10.1101/2020.10.23.20213652 (2020).

    Article  Google Scholar 

  47. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Migueles, S. A. et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl Acad. Sci. USA 97, 2709–2714 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N. Engl. J. Med. 344, 1668–1675 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Kiepiela, P. et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432, 769–775 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8, e64683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McLaren, P. J. et al. Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load. Proc. Natl Acad. Sci. USA 112, 14658–14663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luo, Y. et al. A high-resolution HLA reference panel capturing global population diversity enables multi-ethnic fine-mapping in HIV host response. Preprint at medRxiv https://doi.org/10.1101/2020.07.16.20155606 (2020). This paper presents a framework for HLA allele imputation and association testing from genome-wide SNP data and presents a detailed fine-mapping of HLA functional variation in ~12,000 PLWH.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kelleher, A. D. et al. Clustered mutations in HIV-1 gag are consistently required for escape from Hla-B27–restricted cytotoxic T lymphocyte responses. J. Exp. Med. 193, 375–386 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martinez-Picado, J. et al. Fitness cost of escape mutations in p24 Gag in association with control of human immunodeficiency virus type 1. J. Virol. 80, 3617–3623 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schneidewind, A. et al. Escape from the dominant HLA-B27-restricted cytotoxic T-lymphocyte response in Gag is associated with a dramatic reduction in human immunodeficiency virus type 1 replication. J. Virol. 81, 12382–12393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Migueles, S. A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 3, 1061–1068 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Horton, H. et al. Preservation of T cell proliferation restricted by protective HLA alleles is critical for immune control of HIV-1 infection. J. Immunol. 177, 7406–7415 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Almeida, J. R. et al. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J. Exp. Med. 204, 2473–2485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arora, J. et al. HLA heterozygote advantage against HIV-1 is driven by quantitative and qualitative differences in HLA allele-specific peptide presentation. Mol. Biol. Evol. 37, 639–650 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Arora, J. et al. HIV peptidome-wide association study reveals patient-specific epitope repertoires associated with HIV control. Proc. Natl Acad. Sci. USA 116, 944–949 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gaiha, G. D. et al. Structural topology defines protective CD8+ T cell epitopes in the HIV proteome. Science 364, 480–484 (2019). Using network analysis to quantify the structural importance of amino acids in HIV proteins, the authors show that mutations in epitopes presented by protective HLA class I alleles disproportionately impair viral replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Apps, R. et al. Influence of HLA-C expression level on HIV control. Science 340, 87–91 (2013). This paper demonstrates that HLA-C expression level rather than epitope presentation is the key mediator of its impact on host control of HIV replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kulkarni, S. et al. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 472, 495–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramsuran, V. et al. Epigenetic regulation of differential HLA-A allelic expression levels. Hum. Mol. Genet. 24, 4268–4275 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ramsuran, V. et al. Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells. Science 359, 86–90 (2018). Furthering work on non-classical HLA effects in HIV control, this paper demonstrates how the expression level of the HLA-A signal peptide can regulate the HLA-E–NKG2A interaction modulating spVL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martin, M. P. & Carrington, M. Immunogenetics of HIV disease. Immunol. Rev. 254, 245–264 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Pende, D. et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front. Immunol. 10, 1179 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martin, M. P. et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Genet. 31, 429–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Novembre, J., Galvani, A. P. & Slatkin, M. The geographic spread of the CCR5 Δ32 HIV-resistance allele. PLoS Biol. 3, 1954–1962 (2005).

    Article  CAS  Google Scholar 

  71. Hladik, F. et al. Combined effect of CCR5-Delta32 heterozygosity and the CCR5 promoter polymorphism -2459 A/G on CCR5 expression and resistance to human immunodeficiency virus type 1 transmission. J. Virol. 79, 11677–11684 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fätkenheuer, G. et al. Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat. Med. 11, 1170–1172 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. Wang, H. & Yang, H. Gene-edited babies: what went wrong and what could go wrong. PLoS Biol. 17, e3000224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hutter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009). This is the first description of a functional cure of HIV infection in a patient who received a stem cell transplant from a donor homozygous for the CCR5Δ32 polymorphism.

    Article  PubMed  Google Scholar 

  75. Gupta, R. K. et al. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV 7, e340–e347 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smoleń-Dzirba, J. et al. HIV-1 infection in persons homozygous for CCR5-Δ32 allele: the next case and the review. AIDS Rev. 19, 219–230 (2017).

    PubMed  Google Scholar 

  78. Michael, N. L. et al. The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat. Med. 3, 338–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Kulkarni, S. et al. CCR5AS lncRNA variation differentially regulates CCR5, influencing HIV disease outcome. Nat. Immunol. 20, 824–834 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Carlson, J. M., Le, A. Q., Shahid, A. & Brumme, Z. L. HIV-1 adaptation to HLA: a window into virus-host immune interactions. Trends Microbiol. 23, 212–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Alter, G. et al. HIV-1 adaptation to NK-cell-mediated immune pressure. Nature 476, 96–100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hölzemer, A. et al. Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag sequence variant is associated with viral escape from KIR2DL3+ natural killer cells: data from an observational cohort in South Africa. PLoS Med. 12, e1001900 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Snoeck, J., Fellay, J., Bartha, I., Douek, D. C. & Telenti, A. Mapping of positive selection sites in the HIV-1 genome in the context of RNA and protein structural constraints. Retrovirology 8, 87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bartha, I. et al. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. eLife 2, e01123 (2013). This paper proposes the G2G method and demonstrates that viral genetic variation can be a more powerful phenotype than clinical markers for host–pathogen genomic studies.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Palmer, D. S. et al. Mapping the drivers of within-host pathogen evolution using massive data sets. Nat. Commun. 10, 3017 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Fellay, J. & Pedergnana, V. Exploring the interactions between the human and viral genomes. Hum. Genet. 139, 777–781 (2020).

    Article  PubMed  Google Scholar 

  87. Ansari, M. A. et al. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat. Genet. 49, 666–673 (2017). Applying the G2G approach to hepatitis C virus, the authors demonstrate that it can be used to detect viral evolution owing to both innate and adaptive host immune pressure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chaturvedi, N. et al. Adaptation of hepatitis C virus to interferon lambda polymorphism across multiple viral genotypes. eLife 8, e42542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rüeger, S. et al. The influence of human genetic variation on Epstein-Barr virus sequence diversity. Sci. Rep. 11, 4586 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Eisinger, R. W., Dieffenbach, C. W. & Fauci, A. S. HIV viral load and transmissibility of HIV infection: undetectable equals untransmittable. JAMA 321, 451–452 (2019).

    Article  PubMed  Google Scholar 

  91. Joint United Nations Programme on HIV/AIDS. 90–90–90: an ambitious treatment target to help end the AIDS epidemic (UNAIDS, 2014).

  92. Lubomirov, R. et al. Association of pharmacogenetic markers with premature discontinuation of first-line anti-HIV therapy: an observational cohort study. J. Infect. Dis. 203, 246–257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mallal, S. et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359, 727–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Hetherington, S. et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359, 1121–1122 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Norcross, M. A. et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26, F21–F29 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Rotger, M. et al. Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin. Pharmacol. Ther. 81, 557–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Arab-Alameddine, M. et al. Pharmacogenetics-based population pharmacokinetic analysis of efavirenz in HIV-1-infected individuals. Clin. Pharmacol. Ther. 85, 485–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Haas, D. W. et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 18, 2391–2400 (2004).

    CAS  PubMed  Google Scholar 

  99. di Iulio, J. et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet. Genomics 19, 300–309 (2009).

    Article  PubMed  CAS  Google Scholar 

  100. Lubomirov, R. et al. Pharmacogenetics-based population pharmacokinetic analysis of etravirine in HIV-1 infected individuals. Pharmacogenet. Genomics 23, 9–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Lubomirov, R. et al. ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformulated with ritonavir. Pharmacogenet. Genomics 20, 217–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Zanger, U. M. & Klein, K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front. Genet. 4, 24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nordling, L. How the genomics revolution could finally help Africa. Nature 544, 20–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Kanters, S. et al. Comparative efficacy and safety of first-line antiretroviral therapy for the treatment of HIV infection: a systematic review and network meta-analysis. Lancet HIV 3, e510–e520 (2016).

    Article  PubMed  Google Scholar 

  105. Currier, J. S. et al. Coronary heart disease in HIV-infected individuals. J. Acquir. Immune Defic. Syndr. 33, 506–512 (2003).

    Article  PubMed  Google Scholar 

  106. Obel, N. et al. Ischemic heart disease in HIV-infected and HIV-uninfected individuals: a population-based cohort study. Clin. Infect. Dis. 44, 1625–1631 (2007).

    Article  PubMed  Google Scholar 

  107. Lang, S. et al. Increased risk of myocardial infarction in HIV-infected patients in France, relative to the general population. AIDS 24, 1228–1230 (2010).

    Article  PubMed  Google Scholar 

  108. Périard, D. et al. Atherogenic dyslipidemia in HIV-infected individuals treated with protease inhibitors. The Swiss HIV cohort study. Circulation 100, 700–705 (1999).

    Article  PubMed  Google Scholar 

  109. Nadkarni, G. N. et al. The burden of dialysis-requiring acute kidney injury among hospitalized adults with HIV infection: a nationwide inpatient sample analysis. AIDS 29, 1061–1066 (2015).

    Article  PubMed  Google Scholar 

  110. Scherzer, R. et al. Association of tenofovir exposure with kidney disease risk in HIV infection. AIDS 26, 867–875 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Li, Y. et al. Combination antiretroviral therapy is associated with reduction in liver fibrosis scores in HIV-1-infected subjects. Medicine 95, e2660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rotger, M. et al. Impact of single nucleotide polymorphisms and of clinical risk factors on new-onset diabetes mellitus in HIV-infected individuals. Clin. Infect. Dis. 51, 1090–1098 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Rotger, M. et al. Contribution of genetic background, traditional risk factors, and HIV-related factors to coronary artery disease events in HIV-positive persons. Clin. Infect. Dis. 57, 112–121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dietrich, L. G. et al. Contribution of genetic background and data collection on adverse events of anti-human immunodeficiency virus (HIV) drugs (D:A:D) clinical risk score to chronic kidney disease in Swiss HIV-infected persons with normal baseline estimated glomerular filtration rate. Clin. Infect. Dis. 70, 890–897 (2020).

    CAS  PubMed  Google Scholar 

  115. Dietrich, L. G. et al. Rapid progression of kidney dysfunction in swiss people living with HIV: contribution of polygenic risk score and D:A:D clinical risk score. J. Infect. Dis. 223, 2145–2153 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Chang, H. et al. Genetic architecture of cardiometabolic risks in people living with HIV. BMC Med. 18, 288 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  117. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rotman, D. DNA databases are too white: this man aims to fix that. MIT Technol. Rev. http://www.technologyreview.com/2018/10/15/139472/dna-databases-are-too-white-this-man-aims-to-fix-that/ (2018).

  119. Vukcevic, D. et al. Imputation of KIR types from SNP variation data. Am. J. Hum. Genet. 97, 593–607 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kawaguchi, S., Higasa, K., Shimizu, M., Yamada, R. & Matsuda, F. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38, 788–797 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roe, D. & Kuang, R. Accurate and efficient KIR gene and haplotype inference from genome sequencing reads with novel K-mer signatures. Front. Immunol. 11, 583013 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Sarkar, I., Hauber, I., Hauber, J. & Buchholz, F. HIV-1 proviral DNA excision using an evolved recombinase. Science 316, 1912–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Hu, W. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl Acad. Sci. USA 111, 11461–11466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Thomas, D. L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Thye, T. et al. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat. Genet. 42, 739–741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Malaria Genomic Epidemiology Network. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526, 253–257 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  129. Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sul, J. H., Martin, L. S. & Eskin, E. Population structure in genetic studies: confounding factors and mixed models. PLoS Genet. 14, e1007309 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jacques Fellay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

HIV/AIDS

HIV is the causative agent of AIDS, which is a state of severe immune deficiency defined as an HIV infection with either a CD4+ T cell count <200 cells/µl or the occurrence of a specific AIDS-defining illness.

CC-chemokine receptor 5

(CCR5). A β-chemokine receptor that is involved in lymphocyte trafficking. In combination with CD4, CCR5 is the major host cell receptor for HIV and interacts with gp120 in the viral envelope to promote cell entry and infection.

Cytotoxic T lymphocytes

(CTLs). Cytotoxic T cells (also called CD8+ T cells) are effector T lymphocytes that specifically kill target cells that express an appropriate peptide–MHC class I complex recognised by its T cell receptor.

Human leucocyte antigen

(HLA). A protein, encoded by one of a group of HLA genes, that presents antigens that train the adaptive immune response. HLA genes are highly variable and allelic variants encode proteins that are differentially able to present antigens based on the amino acid sequences in the peptide-binding grooves.

Epitopes

Parts of an antigen that make contact with a particular antibody or T cell receptor and are thus capable of stimulating an immune response.

Polygenic risk scores

(PRS). Statistics that are calculated by enumerating the number of risk alleles associated with a particular phenotype (often weighted by their population-level effect sizes) that are present in a single individual and comparing the individual’s score to the distribution of risk scores in the population.

Population stratification

Presence of systematic differences in allele frequencies between population subgroups owing to systematic differences in ancestry.

HIV progression

The natural disease course of HIV infection in untreated individuals, characterized by an acute phase, a chronic phase and the development of AIDS. The rate of HIV progression varies dramatically in the infected population.

HIV latency

The long-term persistence of HIV in an integrated but transcriptionally inactive form in the host genome. Because latent HIV resides in memory T cells, it persists indefinitely even in patients on suppressive antiretroviral therapy. This latent reservoir is a major barrier to curing HIV infection.

Set point viral load

(spVL). Mean log viral load (HIV RNA copies per millilitre of plasma) measured in an individual with HIV infection during the chronic phase of infection. The spVL varies substantially within a population and correlates with disease progression.

Genetic architecture

Underlying genetic basis of a given trait, in terms of variant number, effect size, allele frequency and interactions.

HIV controllers

A group of people living with HIV whose plasma HIV RNA load is spontaneously maintained at very low levels for several years (usually at least 3–5 years) in the absence of antiretroviral therapy.

Restriction factor

A host cellular protein that participates in antiviral defence by interfering with specific steps of the viral replication cycle.

Killer immunoglobulin-like receptor

(KIR). A family of highly polymorphic activating and inhibitory receptors that serve as key regulators of human natural killer cell function.

HIV target cells

The cells primarily infected by HIV, namely CD4+ T cells and macrophages, both of which are key components of a healthy immune system.

RALY-mediated degradation

A mechanism in which the RALY protein binds to the 3′ untranslated region of an mRNA to promote its degradation.

Transmitted/founder virus

The single viral variant that is responsible for a new infection after being transferred from an infected individual to an uninfected individual. Sexually transmitted HIV infections are typically established from a single transmitted/founder virus.

Genome-to-genome (G2G) studies

Methods that test the hypothesis that host genetic variability causes pathogen genetic variability and can indicate novel host restriction factors.

Treatment as prevention

Strategy to prevent the sexual transmission of HIV through the prescription of HIV medication. It is a highly effective option for preventing HIV transmission. People living with HIV who take antiretroviral drugs and maintain an undetectable viral load have effectively no risk of sexually transmitting the virus to their HIV-negative partners.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLaren, P.J., Fellay, J. HIV-1 and human genetic variation. Nat Rev Genet 22, 645–657 (2021). https://doi.org/10.1038/s41576-021-00378-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-021-00378-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research