Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrating model systems and genomic insights to decipher mechanisms of cancer metastasis

Abstract

Deciphering metastatic processes is crucial for understanding cancer progression and potential treatment options. Genetic studies of model systems engineered to mimic metastatic disease, including organoids, genetically engineered mice and human cell lines, have had an important role in shaping our understanding of the metastatic cascade and how it can be manipulated. More recently, advances in high-throughput sequencing have enabled human metastases to be studied at single-cell and single-nucleotide resolution, providing insights into metastatic evolution and phenotypes of both cancer cells and immune cells. However, human tissue studies are often correlative and descriptive, whereas experimental models are reductionistic by nature, meaning that individual results should be interpreted with caution. Crucially, these seemingly disparate branches of metastasis research can and should complement each other to strengthen and validate findings. Here we explore the synergies between model systems and sequencing studies and outline key areas that must be explored to improve our understanding of the metastatic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the synergism between omics analyses and experimental models in metastasis research.
Fig. 2: Predicting and visualizing metastatic dissemination patterns from human omics data and experimental models.
Fig. 3: Inferences of cell crosstalk in the tumour stroma from human omics data and experimental models.
Fig. 4: A case study for the integration of results from human omics data and experimental models.

Similar content being viewed by others

References

  1. Seyfried, T. N. & Huysentruyt, L. C. On the origin of cancer metastasis. Crit. Rev. Oncog. 18, 43–73 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5, 28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nguyen, D. X., Bos, P. D. & Massagué, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Gupta, G. P. & Massagué, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Hapach, L. A., Mosier, J. A., Wang, W. & Reinhart-King, C. A. Engineered models to parse apart the metastatic cascade. npj Precis. Oncol. 3, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jandial, R. Metastatic Cancer: Clinical and Biological Perspectives (CRC Press, 2013).

  7. Sajjad, H. et al. Cancer models in preclinical research: a chronicle review of advancement in effective cancer research. Anim. Model. Exp. Med. 4, 87–103 (2021).

    Article  Google Scholar 

  8. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  9. Langley, R. R. & Fidler, I. J. The seed and soil hypothesis revisited — the role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer 128, 2527–2535 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al Bakir, M. et al. The evolution of non-small cell lung cancer metastases in TRACERx. Nature 616, 534–542 (2023). This study of a multiregional cohort of paired primary tumour–metastasis samples illustrates the evolutionary trajectories of NSCLC metastases and highlights the importance of extensive tumour sampling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 23, 703–713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bertucci, F. et al. Genomic characterization of metastatic breast cancers. Nature 569, 560–564 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Angelova, M. et al. Evolution of metastases in space and time under immune selection. Cell 175, 751–765.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Birkbak, N. J. & McGranahan, N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell 37, 8–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turajlic, S. & Swanton, C. Metastasis as an evolutionary process. Science 352, 169–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Hu, Z. & Curtis, C. Looking backward in time to define the chronology of metastasis. Nat. Commun. 11, 3213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Welch, D. R. & Hurst, D. R. Defining the hallmarks of metastasis. Cancer Res. 79, 3011–3027 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stuelten, C. H., Parent, C. A. & Montell, D. J. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat. Rev. Cancer 18, 296–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherwood, D. R. & Sternberg, P. W. Anchor cell invasion into the vulval epithelium in C. elegans. Dev. Cell 5, 21–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Matus, D. Q. et al. Invasive cell fate requires G1 cell-cycle arrest and histone deacetylase-mediated changes in gene expression. Dev. Cell 35, 162–174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. USA 113, E854–E863 (2016). This study uses multicolour lineage tracing in a mouse model of breast cancer, providing visual evidence for metastases that arose via polyclonal dissemination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Konen, J. et al. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun. 8, 15078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Noorani, A. et al. Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma. Nat. Genet. 52, 74–83 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, J. E., Kim, K. T., Shin, S.-J., Cheong, J.-H. & Choi, Y. Y. Genomic and evolutionary characteristics of metastatic gastric cancer by routes. Br. J. Cancer 129, 672–682 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022). A pan-cancer study of metastatic disease in more than 25,000 patients that emphasizes the role of chromosomal instability and identifies somatic alterations that are potentially important in driving metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Christensen, D. S. et al. Treatment represents a key driver of metastatic cancer evolution. Cancer Res. 82, 2918–2927 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Hu, Z., Li, Z., Ma, Z. & Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701–708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martínez-Jiménez, F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 618, 333–341 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lengel, H. B. et al. Genomic mapping of metastatic organotropism in lung adenocarcinoma. Cancer Cell 41, 970–985.e3 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, W.-F. et al. Timing and origins of local and distant metastases in lung cancer. J. Thorac. Oncol. 16, 1136–1148 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Biermann, J. et al. Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell 185, 2591–2608.e30 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frankell, A. M. et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 616, 525–533 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Litchfield, K. et al. Representative sequencing: unbiased sampling of solid tumor tissue. Cell Rep. 31, 107550 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Tomasetti, C., Vogelstein, B. & Parmigiani, G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl Acad. Sci. USA 110, 1999–2004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lim, C.-H. et al. The chronological sequence of somatic mutations in early gastric carcinogenesis inferred from multiregion sequencing of gastric adenomas. Oncotarget 7, 39758–39767 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee, S. H., Yoo, J., Song, Y. S., Lim, C.-H. & Kim, T.-M. Mutation analysis of colorectal and gastric carcinomas originating from adenomas: insights into genomic evolution associated with malignant progression. Cancers 12, 325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jin, X. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Allen, T. M. et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat. Immunol. 20, 770–774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huebner, A., Dietzen, M. & McGranahan, N. SnapShot: tumor evolution. Cell 184, 1650–1650.e1 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Grigoriadis, K. et al. CONIPHER: a computational framework for scalable phylogenetic reconstruction with error correction. Nat. Protoc. 19, 159–183 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Venet, D. et al. Phylogenetic reconstruction of breast cancer reveals two routes of metastatic dissemination associated with distinct clinical outcome. EBioMedicine 56, 102793 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Andersson, N., Chattopadhyay, S., Valind, A., Karlsson, J. & Gisselsson, D. DEVOLUTION — a method for phylogenetic reconstruction of aneuploid cancers based on multiregional genotyping data. Commun. Biol. 4, 1103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. El-Kebir, M., Satas, G. & Raphael, B. J. Inferring parsimonious migration histories for metastatic cancers. Nat. Genet. 50, 718–726 (2018). This study introduces a computational algorithm that infers metastatic seeding and migration patterns; it suggests that polyclonal dissemination might be over-reported upon undersampling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brown, D. et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat. Commun. 8, 14944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hoadley, K. A. et al. Tumor evolution in two patients with basal-like breast cancer: a retrospective genomics study of multiple metastases. PLoS Med. 13, e1002174 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Abbosh, C. et al. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA. Nature 616, 553–562 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reeves, M. Q., Kandyba, E., Harris, S., Del Rosario, R. & Balmain, A. Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20, 699–709 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maddipati, R. & Stanger, B. Z. Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov. 5, 1086–1097 (2015). Using a Cas9-based lineage tracer and single-cell RNA sequencing, this study reveals complex seeding and migration patterns of human lung cancer in a mouse xenograft model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang, Y. J. et al. Tracing tumor evolution in sarcoma reveals clonal origin of advanced metastasis. Cell Rep. 28, 2837–2850.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Simeonov, K. P. et al. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 39, 1150–1162.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Quinn, J. J. et al. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science 371, eabc1944 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Karlsson, K. et al. Deterministic evolution and stringent selection during preneoplasia. Nature 618, 383–393 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lambert, A. W. & Weinberg, R. A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 21, 325–338 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Kim, B. N. et al. TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Sci. Rep. 10, 10597 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Park, S.-H. et al. Particulate matter promotes cancer metastasis through increased HBEGF expression in macrophages. Exp. Mol. Med. 54, 1901–1912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Richters, A. & Kuraitis, K. Air pollutants and the facilitation of cancer metastasis. Environ. Health Perspect. 52, 165–168 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pastushenko, I. et al. Identification of the tumour transition states occurring during EMT. Nature 556, 463–468 (2018). This study shows that multiple tumour cell subtypes, including those in non-polarized hybrid states, exist during EMT, with different levels of various factors being associated with metastatic aggression.

    Article  CAS  PubMed  Google Scholar 

  74. Pal, A., Barrett, T. F., Paolini, R., Parikh, A. & Puram, S. V. Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene 40, 5049–5065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Roshanzamir, F., Robinson, J. L., Cook, D., Karimi-Jafari, M. H. & Nielsen, J. Metastatic triple negative breast cancer adapts its metabolism to destination tissues while retaining key metabolic signatures. Proc. Natl Acad. Sci. USA 119, e2205456119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pavlič, A., Urh, K., Štajer, K., Boštjančič, E. & Zidar, N. Epithelial–mesenchymal transition in colorectal carcinoma: comparison between primary tumor, lymph node and liver metastases. Front. Oncol. 11, 662806 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kamal, Y., Schmit, S. L., Hoehn, H. J., Amos, C. I. & Frost, H. R. Transcriptomic differences between primary colorectal adenocarcinomas and distant metastases reveal metastatic colorectal cancer subtypes. Cancer Res. 79, 4227–4241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lili, L. N. et al. Molecular profiling supports the role of epithelial-to-mesenchymal transition (EMT) in ovarian cancer metastasis. J. Ovarian Res. 6, 49 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Winkler, J. et al. Single-cell analysis of breast cancer metastasis reveals epithelial-mesenchymal plasticity signatures associated with poor outcomes. J. Clin. Invest. 134, e164227 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moorman, A. R. et al. Progressive plasticity during colorectal cancer metastasis. Nature 637, 947–954 (2025). This study reports a conserved, progenitor-like, plastic tumour cell state that can differentiate into multiple lineages of cells that are enriched in colorectal cancer metastases.

    Article  CAS  PubMed  Google Scholar 

  82. Gonzalez, H. et al. Cellular architecture of human brain metastases. Cell 185, 729–745.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nam, A. S. et al. Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature 571, 355–360 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Monteran, L., Zait, Y. & Erez, N. It’s all about the base: stromal cells are central orchestrators of metastasis. Trends Cancer 10, 208–229 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Bussard, K. M., Mutkus, L., Stumpf, K., Gomez-Manzano, C. & Marini, F. C. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 18, 84 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Guo, S. & Deng, C.-X. Effect of stromal cells in tumor microenvironment on metastasis initiation. Int. J. Biol. Sci. 14, 2083–2093 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Duda, D. G. et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl Acad. Sci. USA 107, 21677–21682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Asif, P. J., Longobardi, C., Hahne, M. & Medema, J. P. The role of cancer-associated fibroblasts in cancer invasion and metastasis. Cancers 13, 4720 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, L. et al. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway. Oncotarget 8, 76116–76128 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Cords, L. et al. Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell 42, 396–412.e5 (2024). Using spatially resolved, single-cell, imaging mass cytometry, this study identifies distinct CAF populations that are associated with various determinants of patient outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Enfield, K. S. S. et al. Spatial architecture of myeloid and T cells orchestrates immune evasion and clinical outcome in lung cancer. Cancer Discov. 14, 1018–1047 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jia, C.-C. et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS ONE 8, e63243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, L. et al. Cancer-associated fibroblast-related gene signatures predict survival and drug response in patients with colorectal cancer. Front. Genet. 13, 1054152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, Z. et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun. 11, 5077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Erez, N., Truitt, M., Olson, P., Arron, S. T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17, 135–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Erez, N., Glanz, S., Raz, Y., Avivi, C. & Barshack, I. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem. Biophys. Res. Commun. 437, 397–402 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Cords, L. et al. Cancer-associated fibroblast classification in single-cell and spatial proteomics data. Nat. Commun. 14, 4294 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Luo, H. et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun. 13, 6619 (2022). This study highlights the heterogeneity of CAFs and their plasticity across cancer types, and suggests evolutionary trajectories that could lead to distinct CAF states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shih, A. J. et al. Identification of grade and origin specific cell populations in serous epithelial ovarian cancer by single cell RNA-seq. PLoS ONE 13, e0206785 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gong, Z. et al. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity 55, 1483–1500.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zeng, H. et al. Cancer-associated fibroblasts facilitate premetastatic niche formation through lncRNA SNHG5-mediated angiogenesis and vascular permeability in breast cancer. Theranostics 12, 7351–7370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Patras, L., Shaashua, L., Matei, I. & Lyden, D. Immune determinants of the pre-metastatic niche. Cancer Cell 41, 546–572 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, Z. et al. Metastasis-associated fibroblasts: an emerging target for metastatic cancer. Biomark. Res. 9, 47 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng, Z. et al. Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3. Nat. Commun. 12, 6202 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Suresh, R. & Diaz, R. J. The remodelling of actin composition as a hallmark of cancer. Transl. Oncol. 14, 101051 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamaguchi, H. & Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773, 642–652 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Swierczak, A., Mouchemore, K. A., Hamilton, J. A. & Anderson, R. L. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev. 34, 735–751 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Xiong, S., Dong, L. & Cheng, L. Neutrophils in cancer carcinogenesis and metastasis. J. Hematol. Oncol. 14, 173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Galdiero, M. R. et al. Tumor associated macrophages and neutrophils in cancer. Immunobiology 218, 1402–1410 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Giese, M. A., Hind, L. E. & Huttenlocher, A. Neutrophil plasticity in the tumor microenvironment. Blood 133, 2159–2167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jia, J. et al. Neutrophils in the premetastatic niche: key functions and therapeutic directions. Mol. Cancer 23, 200 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kaltenmeier, C., Simmons, R. L., Tohme, S. & Yazdani, H. O. Neutrophil extracellular traps (NETs) in cancer metastasis. Cancers 13, 6131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015). This study shows the role of neutrophils in establishing a pre-metastatic niche in the lung in breast cancer, by means such as the selective proliferation of cells with high metastasis-initiating potential.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee, W. et al. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J. Exp. Med. 216, 176–194 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Neophytou, C. M., Panagi, M., Stylianopoulos, T. & Papageorgis, P. The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities. Cancers 13, 2053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Neophytou, C. M. et al. The role of tumor-associated myeloid cells in modulating cancer therapy. Front. Oncol. 10, 899 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pan, Y., Yu, Y., Wang, X. & Zhang, T. Corrigendum: tumor-associated macrophages in tumor immunity. Front. Immunol. 12, 775758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lin, Y., Xu, J. & Lan, H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ma, R.-Y., Black, A. & Qian, B.-Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Wang, J., Zhu, N., Su, X., Gao, Y. & Yang, R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front. Immunol. 14, 1264774 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Tang, J. et al. The heterogeneity of tumour-associated macrophages contributes to the clinical outcomes and indications for immune checkpoint blockade in colorectal cancer patients. Immunobiology 229, 152805 (2024). This study identifies subtypes of TAMs and suggests that TAMs that reside at the tumour border are more likely to be responsive to immunotherapy because they have more genomic disruption.

    Article  CAS  PubMed  Google Scholar 

  128. Su, S. et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25, 605–620 (2014).

    Article  PubMed  Google Scholar 

  129. Comito, G. et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Kim, J. H. et al. The role of myofibroblasts in upregulation of S100A8 and S100A9 and the differentiation of myeloid cells in the colorectal cancer microenvironment. Biochem. Biophys. Res. Commun. 423, 60–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Mao, X. et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer 20, 131 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Davidson, S. et al. Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31, 107628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in humans. Nature 563, 347–353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dimitrov, D. et al. LIANA+ provides an all-in-one framework for cell-cell communication inference. Nat. Cell Biol. 26, 1613–1622 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Karimi, E. et al. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 614, 555–563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu, M., Stott, S., Toner, M., Maheswaran, S. & Haber, D. A. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mohammed, S. I., Torres-Luquis, O., Walls, E. & Lloyd, F. Lymph-circulating tumor cells show distinct properties to blood-circulating tumor cells and are efficient metastatic precursors. Mol. Oncol. 13, 1400–1418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nasr, M. M. & Lynch, C. C. How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy. Cancer Metastasis Rev. 42, 1133–1146 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014). This study shows that CTC clusters arise from the heterogeneous primary tumour rather than through intravascular aggregation, and have greater metastatic potential than singular CTCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ting, D. T. et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Seo, J. et al. Plasticity of circulating tumor cells in small cell lung cancer. Sci. Rep. 13, 11775 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cheng, Y.-H. et al. Hydro-Seq enables contamination-free high-throughput single-cell RNA-sequencing for circulating tumor cells. Nat. Commun. 10, 2163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Barrière, G., Riouallon, A., Renaudie, J., Tartary, M. & Rigaud, M. Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer 12, 114 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Papadaki, M. A. et al. Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol. Cancer Ther. 18, 437–447 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Morel, A.-P. et al. Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS ONE 3, e2888 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Negishi, R. et al. Transcriptomic profiling of single circulating tumor cells provides insight into human metastatic gastric cancer. Commun. Biol. 5, 20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Powell, A. A. et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7, e33788 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Oulhen, M. et al. Circulating tumor cell copy-number heterogeneity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. npj Precis. Oncol. 5, 67 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Carter, L. et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat. Med. 23, 114–119 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Paoletti, C. et al. Comprehensive mutation and copy number profiling in archived circulating breast cancer tumor cells documents heterogeneous resistance mechanisms. Cancer Res. 78, 1110–1122 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Moose, D. L. et al. Cancer cells resist mechanical destruction in circulation via RhoA/actomyosin-dependent mechano-adaptation. Cell Rep. 30, 3864–3874.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Regmi, S., Fu, A. & Luo, K. Q. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci. Rep. 7, 39975 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mammadova-Bach, E. et al. Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight 1, e88245 (2016). This study shows the functional role of the tumour-resident microbiota in facilitating metastatic spread by reducing fluid shear stress during circulation.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Fu, A. et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell 185, 1356–1372.e26 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Xin, Y., Li, K., Yang, M. & Tan, Y. Fluid shear stress induces EMT of circulating tumor cells via JNK signaling in favor of their survival during hematogenous dissemination. Int. J. Mol. Sci. 21, 8115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gaikwad, A. et al. Aerogenous metastases: a potential game changer in the diagnosis and management of primary lung adenocarcinoma. AJR Am. J. Roentgenol. 203, W570–W582 (2014).

    Article  PubMed  Google Scholar 

  158. Karasaki, T. et al. Evolutionary characterization of lung adenocarcinoma morphology in TRACERx. Nat. Med. 29, 833–845 (2023). This study reports evidence that supports the hypothesis of metastatic spread through the airspaces; such tumours were associated with poor prognosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Giancotti, F. G. Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750–764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Karrison, T. G., Ferguson, D. J. & Meier, P. Dormancy of mammary carcinoma after mastectomy. J. Natl Cancer Inst. 91, 80–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  161. Montagner, M. & Sahai, E. In vitro models of breast cancer metastatic dormancy. Front. Cell Dev. Biol. 8, 37 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mahmoud, A. & Ganesh, K. Mouse models of metastasis and dormancy. Cold Spring Harb. Perspect. Med. 14, a041386 (2024).

    Article  PubMed  Google Scholar 

  163. Turrell, F. K. et al. Age-associated microenvironmental changes highlight the role of PDGF-C in ER+ breast cancer metastatic relapse. Nat. Cancer 4, 468–484 (2023). This study illustrates, in mice and human cohort data, the importance of PDGF-C in the often-observed delayed metastatic relapse of oestrogen receptor-positive breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Malanchi, I. et al. An extramedullary bone model to study metastatic dormancy reveals a piecemeal model for metastatic reactivation. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-3173228/v1 (2023).

  165. Izumchenko, E. et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann. Oncol. 28, 2595–2605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Hynds, R. E. et al. Representation of genomic intratumor heterogeneity in multi-region non-small cell lung cancer patient-derived xenograft models. Nat. Commun. 15, 4653 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hessey, S., Fessas, P., Zaccaria, S., Jamal-Hanjani, M. & Swanton, C. Insights into the metastatic cascade through research autopsies. Trends Cancer 9, 490–502 (2023).

    Article  PubMed  Google Scholar 

  170. Zhang, Y. et al. Single-cell RNA sequencing reveals that the immunosuppression landscape induced by chronic stress promotes colorectal cancer metastasis. Heliyon 10, e23552 (2024).

    Article  CAS  PubMed  Google Scholar 

  171. Cheng, V. et al. Colorectal cancer and onset of anxiety and depression: a systematic review and meta-analysis. Curr. Oncol. 29, 8751–8766 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Grimes, M. Zagorulya and A. Huebner for their insightful comments and discussions during the writing of this review. M.M.L. is supported by the Rosetrees Trust. C.S. is a Royal Society Napier Research Professor (RSRP\R\210001). His work is supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (CRUK) (CC2041), the UK Medical Research Council (CC2041) and the Wellcome Trust (CC2041). N.M. is a Sir Henry Dale Fellow, jointly funded by the Wellcome Trust and the Royal Society (211179/Z/18/Z). He also receives funding from CRUK, the Rosetrees Trust and the NIHR BRC at University College London Hospitals.

Author information

Authors and Affiliations

Authors

Contributions

M.M.L. and N.M. researched data for the article. M.M.L. and N.M. contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Charles Swanton or Nicholas McGranahan.

Ethics declarations

Competing interests

C.S. acknowledges grants from AstraZeneca, Boehringer-Ingelheim, Bristol Myers Squibb, Pfizer, Roche-Ventana, Invitae (previously Archer Dx Inc. — collaboration in minimal residual disease sequencing technologies), Ono Pharmaceutical, and Personalis. He is Chief Investigator for the AstraZeneca MeRmaiD 1 and 2 clinical trials and is the Steering Committee Chair. He is also Co-Chief Investigator of the NHS Galleri trial funded by GRAIL and a paid member of GRAIL’s Scientific Advisory Board (SAB). He receives consultant fees from Achilles Therapeutics (also a SAB member), Bicycle Therapeutics (also a SAB member), Genentech, Medicxi, China Innovation Centre of Roche (CICoR; formerly Roche Innovation Centre, Shanghai), Metabomed (until July 2022), Relay Therapeutics SAB member, Saga Diagnostics SAB member and the Sarah Cannon Research Institute. C.S. has received honoraria from Amgen, AstraZeneca, Bristol Myers Squibb, GlaxoSmithKline, Illumina, MSD, Novartis, Pfizer and Roche-Ventana. C.S. has previously held stock options in Apogen Biotechnologies and GRAIL, and currently has stock options in Epic Bioscience, Bicycle Therapeutics, Relay Therapeutics, and has stock options and is co-founder of Achilles Therapeutics. C.S. declares a patent application for methods to detect lung cancer (PCT/US2017/028013); targeting neoantigens (PCT/EP2016/059401); identifying patient response to immune checkpoint blockade (PCT/EP2016/071471); methods for lung cancer detection (US20190106751A1); identifying patients who respond to cancer treatment (PCT/GB2018/051912); determining HLA loss of heterozygosity (PCT/GB2018/052004); predicting survival rates of patients with cancer (PCT/GB2020/050221); and methods and systems for tumour monitoring (PCT/EP2022/077987). C.S. is an inventor on a European patent application (PCT/GB2017/053289) relating to assay technology to detect tumour recurrence. This patent has been licensed to a commercial entity and under their terms of employment C.S. is due a revenue share of any revenue generated from such license(s). N.M. has stock options in and has consulted for Achilles Therapeutics and holds a European patent in determining HLA loss of heterozygosity (PCT/GB2018/052004), a patent pending in determining HLA disruption (PCT/EP2023/059039), and is a co-inventor on a patent to identify responders to cancer treatment (PCT/GB2018/051912). M.M.L. declares no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Zheng Hu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anoikis

A form of apoptosis that occurs when cells detach from the extracellular matrix and/or neighbouring cells.

Basement membrane

A thin and pliable layer of extracellular matrix that lines tissue, providing structural support and separating cell types. Also known as the basal lamina.

Circulating tumour DNA

Fragments of DNA from tumour cells that can be detected in the bloodstream.

Confetti mouse

A genetically engineered mouse model that has a four-colour cassette that causes cells to be labelled randomly, allowing multicolour visualization.

Contingent evolution

Evolution shaped by chance-based events, such as mutations.

Convergent evolution

Evolution of separate lineages in response to similar environmental pressures, resulting in analogous phenotypes.

Epithelial–mesenchymal transition

(EMT). The process by which an epithelial cell acquires mesenchymal characteristics, thereby increasing its invasiveness and migratory propensity towards metastasis.

Invadopodia

Finger-like protrusions of the plasma membrane of a cell that facilitate cell migration.

Matrix metalloproteinases

(MMPs). A family of proteolytic enzymes found in the extracellular matrix.

Mesenchymal–epithelial transition

The reverse process of epithelial–mesenchymal transition, typically occurring in the later stages of metastasis (for example, during colonization at a site distant from the primary tumour), whereby a migrating tumour cell with mesenchymal properties re-acquires epithelial characteristics.

Neoadjuvant therapy

Treatment provided before a main treatment. For cancer, examples include chemotherapy and hormone therapy, which are often used to shrink a tumour before surgery.

Pre-metastatic niche

An environment distant from the primary tumour site that is primed for the colonization and growth of a tumour metastasis.

Triple-negative breast cancer

A fast-growing and invasive type of breast cancer lacking expression of HER2 and oestrogen and progesterone receptors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, M.M., Swanton, C. & McGranahan, N. Integrating model systems and genomic insights to decipher mechanisms of cancer metastasis. Nat Rev Genet 26, 494–505 (2025). https://doi.org/10.1038/s41576-025-00825-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-025-00825-2

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer