Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumour-associated vasculature in T cell homing and immunity: opportunities for cancer therapy

Abstract

The formation of new blood vessels — known as angiogenesis — is essential for the growth and spread of solid tumours. It is promoted by the hypoxic conditions that develop in growing tumours and drive the expression of pro-angiogenic growth factors by tumour cells and various stromal cells. However, the tumour-associated vasculature (TAV) generated by angiogenesis is abnormal and is a key barrier to T cell entry into tumours. Moreover, the TAV creates a hostile microenvironment owing to an accumulation of suppressive immune cells, hypoxic and acidic conditions, and high interstitial pressure, which all limit the function and survival of effector T cells. Here, we present the mechanisms of T cell migration into tumours, including via high endothelial venules, and the importance of tertiary lymphoid structures, which function as privileged sites for antigen presentation, activation and co-stimulation of T cells, for mounting effective antitumour immunity. We describe how the tumour vasculature limits antitumour T cell responses and how T cell responses could be improved by therapeutic targeting of the TAV. In particular, the use of combination therapies that aim to normalize tumour blood vessels, favourably reprogramme endogenous immunity, and support T cell trafficking, function and persistence will be key to improving clinical responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of tumour blood vessels and the impact of their aberrant function on the tumour microenvironment.
Fig. 2: Mechanisms of T cell trafficking into tumours via tumour blood vessels and high endothelial venules.
Fig. 3: An ectopic tertiary lymphoid structure adjacent to a high endothelial venule in tumour tissue.
Fig. 4: Overview of mechanisms by which the aberrant tumour-associated vasculature can impair effector T cell trafficking and function in solid tumours.
Fig. 5: Tumour blood vessel normalization.

Similar content being viewed by others

References

  1. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Weis, S. M. & Cheresh, D. A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17, 1359–1370 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Lanitis, E., Irving, M. & Coukos, G. Targeting the tumor vasculature to enhance T cell activity. Curr. Opin. Immunol. 33, 55–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sarnaik, A. A., Hwu, P., Mule, J. J. & Pilon-Thomas, S. Tumor-infiltrating lymphocytes: a new hope. Cancer Cell 42, 1315–1318 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Giordano Attianese, G. M. P., Ash, S. & Irving, M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol. Rev. 320, 166–198 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T. & Vu, V. T. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr. Mol. Med. 9, 442–458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Chouaib, S., Noman, M. Z., Kosmatopoulos, K. & Curran, M. A. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36, 439–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Gimbrone, M. A. Jr., Leapman, S. B., Cotran, R. S. & Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136, 261–276 (1972).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Forster, J. C., Harriss-Phillips, W. M., Douglass, M. J. & Bezak, E. A review of the development of tumor vasculature and its effects on the tumor microenvironment. Hypoxia 5, 21–32 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Welti, J., Loges, S., Dimmeler, S. & Carmeliet, P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Invest. 123, 3190–3200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McDonald, D. M. & Baluk, P. Significance of blood vessel leakiness in cancer. Cancer Res. 62, 5381–5385 (2002).

    CAS  PubMed  Google Scholar 

  15. Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagy, J. A. & Dvorak, H. F. Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin. Exp. Metastasis 29, 657–662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Palma, M. & Hanahan, D. Milestones in tumor vascularization and its therapeutic targeting. Nat. Cancer 5, 827–843 (2024).

    Article  PubMed  Google Scholar 

  18. Vuillefroy de Silly, R., Pericou, L., Seijo, B., Crespo, I. & Irving, M. Acidity suppresses CD8 + T-cell function by perturbing IL-2, mTORC1, and c-Myc signaling. EMBO J. 43, 4922-4953 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dudley, A. C. & Griffioen, A. W. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 26, 313–347 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Baeriswyl, V. & Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19, 329–337 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Semenza, G. L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 9, 47–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Vigano, S. et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front. Immunol. 10, 925 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Ma, R. Y., Black, A. & Qian, B. Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Lapenna, A., De Palma, M. & Lewis, C. E. Perivascular macrophages in health and disease. Nat. Rev. Immunol. 18, 689–702 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, S. et al. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis. Oncol. 8, 31 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512–526 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Coffelt, S. B. et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J. Immunol. 186, 4183–4190 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Coffelt, S. B. et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res. 70, 5270–5280 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Turrini, R. et al. TIE-2 expressing monocytes in human cancers. Oncoimmunology 6, e1303585 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. McRitchie, B. R. & Akkaya, B. Exhaust the exhausters: targeting regulatory T cells in the tumor microenvironment. Front. Immunol. 13, 940052 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun, W. et al. A positive-feedback loop between tumour infiltrating activated Treg cells and type 2-skewed macrophages is essential for progression of laryngeal squamous cell carcinoma. Br. J. Cancer 117, 1631–1643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Komi, D. E. A. & Redegeld, F. A. Role of mast cells in shaping the tumor microenvironment. Clin. Rev. Allergy Immunol. 58, 313–325 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Hedrick, C. C. & Malanchi, I. Neutrophils in cancer: heterogeneous and multifaceted. Nat. Rev. Immunol. 22, 173–187 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Vetsika, E. K., Koukos, A. & Kotsakis, A. Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer. Cells 8, 1647 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Kanzaki, R. & Pietras, K. Heterogeneity of cancer-associated fibroblasts: opportunities for precision medicine. Cancer Sci. 111, 2708–2717 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jain, S. et al. Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects. J. Clin. Invest. 133, e147087 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Elices, M. J. et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60, 577–584 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Bridgeman, V. L. et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J. Pathol. 241, 362–374 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Teuwen, L. A. et al. Tumor vessel co-option probed by single-cell analysis. Cell Rep. 35, 109253 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Leenders, W. P. et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin. Cancer Res. 10, 6222–6230 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Kuczynski, E. A. & Reynolds, A. R. Vessel co-option and resistance to anti-angiogenic therapy. Angiogenesis 23, 55–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Rada, M., Hassan, N., Lazaris, A. & Metrakos, P. The molecular mechanisms underlying neutrophil infiltration in vessel co-opting colorectal cancer liver metastases. Front. Oncol. 12, 1004793 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zeng, Q. et al. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat. Rev. Cancer 23, 544–564 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 21–36.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24, 701–715 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Opzoomer, J. W. et al. Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression. Sci. Adv. 7, eabg9518 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    Article  PubMed  Google Scholar 

  54. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Sackstein, R., Schatton, T. & Barthel, S. R. T-lymphocyte homing: an underappreciated yet critical hurdle for successful cancer immunotherapy. Lab. Invest. 97, 669–697 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lawrence, M. B., Kansas, G. S., Kunkel, E. J. & Ley, K. Threshold levels of fluid shear promote leukocyte adhesion through selectins (CD62L,P,E). J. Cell Biol. 136, 717–727 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lotscher, J. et al. Magnesium sensing via LFA-1 regulates CD8+ T cell effector function. Cell 185, 585–602.e29 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Rothlein, R., Dustin, M. L., Marlin, S. D. & Springer, T. A. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 137, 1270–1274 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. Osborn, L. et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59, 1203–1211 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Pober, J. S. et al. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J. Immunol. 137, 1893–1896 (1986).

    Article  CAS  PubMed  Google Scholar 

  63. Griffioen, A. W., Damen, C. A., Martinotti, S., Blijham, G. H. & Groenewegen, G. Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res. 56, 1111–1117 (1996).

    CAS  PubMed  Google Scholar 

  64. Griffioen, A. W., Damen, C. A., Blijham, G. H. & Groenewegen, G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88, 667–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Facciabene, A. et al. Local endothelial complement activation reverses endothelial quiescence, enabling T-cell homing, and tumor control during T-cell immunotherapy. Oncoimmunology 6, e1326442 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Girard, J. P. & Springer, T. A. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol. Today 16, 449–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Engelhard, V. H. et al. Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J. Immunol. 200, 432–442 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Vella, G., Hua, Y. & Bergers, G. High endothelial venules in cancer: regulation, function, and therapeutic implication. Cancer Cell 41, 527–545 (2023).

    Article  CAS  PubMed  Google Scholar 

  69. Streeter, P. R., Rouse, B. T. & Butcher, E. C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107, 1853–1862 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Martinet, L. et al. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res. 71, 5678–5687 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Lee, M. et al. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nat. Immunol. 15, 982–995 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Colbeck, E. J. et al. Treg depletion licenses T cell-driven HEV neogenesis and promotes tumor destruction. Cancer Immunol. Res. 5, 1005–1015 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hindley, J. P. et al. T-cell trafficking facilitated by high endothelial venules is required for tumor control after regulatory T-cell depletion. Cancer Res. 72, 5473–5482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tsuboi, K. et al. Role of high endothelial venule-expressed heparan sulfate in chemokine presentation and lymphocyte homing. J. Immunol. 191, 448–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Melssen, M. M., Sheybani, N. D., Leick, K. M. & Slingluff, C. L. Jr. Barriers to immune cell infiltration in tumors. J. Immunother. Cancer 11, e006401 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Peske, J. D. et al. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat. Commun. 6, 7114 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Ruddle, N. H. High endothelial venules and lymphatic vessels in tertiary lymphoid organs: characteristics, functions, and regulation. Front. Immunol. 7, 491 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Martinet, L. et al. High endothelial venules (HEVs) in human melanoma lesions: major gateways for tumor-infiltrating lymphocytes. Oncoimmunology 1, 829–839 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hua, Y. et al. Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1+ T lymphocyte niches through a feed-forward loop. Cancer Cell 40, 1600–1618.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Asrir, A. et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 40, 318–334.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Colbeck, E. J., Ager, A., Gallimore, A. & Jones, G. W. Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front. Immunol. 8, 1830 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science 375, eabf9419 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. de Chaisemartin, L. et al. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res. 71, 6391–6399 (2011).

    Article  PubMed  Google Scholar 

  85. Goc, J. et al. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res. 74, 705–715 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Vella, G., Guelfi, S. & Bergers, G. High endothelial venules: a vascular perspective on tertiary lymphoid structures in cancer. Front. Immunol. 12, 736670 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bouzin, C., Brouet, A., De Vriese, J., Dewever, J. & Feron, O. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol. 178, 1505–1511 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Ma, W. et al. Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nat. Cancer 2, 83–97 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Hellebrekers, D. M. et al. Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res. 66, 10770–10777 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, D. J. et al. Priming a vascular-selective cytokine response permits CD8+ T-cell entry into tumors. Nat. Commun. 14, 2122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Karikoski, M. et al. Clever-1/stabilin-1 controls cancer growth and metastasis. Clin. Cancer Res. 20, 6452–6464 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Kabir, A. U. et al. Dual role of endothelial Myct1 in tumor angiogenesis and tumor immunity. Sci. Transl. Med. 13, eabb6731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guelfi, S., Hodivala-Dilke, K. & Bergers, G. Targeting the tumour vasculature: from vessel destruction to promotion. Nat. Rev. Cancer 24, 655–675 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Martin, J. D., Seano, G. & Jain, R. K. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu. Rev. Physiol. 81, 505–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang, T. et al. Vascular normalization: a new window opened for cancer therapies. Front. Oncol. 11, 719836 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ruegg, C. & Mutter, N. Anti-angiogenic therapies in cancer: achievements and open questions. Bull. Cancer 94, 753–762 (2007).

    CAS  PubMed  Google Scholar 

  101. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10, 145–147 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl Acad. Sci. USA 109, 17561–17566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Secondini, C. et al. Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti-metastatic effects of VEGFR-2 blockade. Oncoimmunology 6, e1316437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tada, Y. et al. Targeting VEGFR2 with ramucirumab strongly impacts effector/activated regulatory T cells and CD8+ T cells in the tumor microenvironment. J. Immunother. Cancer 6, 106 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Arance, A. et al. Phase II LEAP-004 study of lenvatinib plus pembrolizumab for melanoma with confirmed progression on a programmed cell death protein-1 or programmed death ligand 1 inhibitor given as monotherapy or in combination. J. Clin. Oncol. 41, 75–85 (2023).

    Article  CAS  PubMed  Google Scholar 

  108. Merck and Eisai provide update on phase 3 trials of KEYTRUDA® (pembrolizumab) plus LENVIMA® (lenvatinib) in certain patients with advanced melanoma (LEAP-003) and metastatic colorectal cancer (LEAP-017). https://www.eisai.com/news/2023/pdf/enews202329pdf.pdf (2023).

  109. Yang, J. et al. Lenvatinib improves anti-PD-1 therapeutic efficacy by promoting vascular normalization via the NRP-1-PDGFRβ complex in hepatocellular carcinoma. Front. Immunol. 14, 1212577 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tran, T. T. et al. Lenvatinib or anti-VEGF in combination with anti-PD-1 differentially augments antitumor activity in melanoma. JCI Insight 8, e157347 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Yamauchi, M. et al. Lenvatinib activates anti-tumor immunity by suppressing immunoinhibitory infiltrates in the tumor microenvironment of advanced hepatocellular carcinoma. Commun. Med. 3, 152 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171–6180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bocca, P. et al. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Oncoimmunology 7, e1378843 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dong, X. et al. Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J. Immunother. Cancer 11, e005583 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Saharinen, P., Eklund, L. & Alitalo, K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat. Rev. Drug Discov. 16, 635–661 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Park, H. R. et al. Angiopoietin-2-dependent spatial vascular destabilization promotes T-cell exclusion and limits immunotherapy in melanoma. Cancer Res. 83, 1968–1983 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Park, J. S. et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30, 953–967 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Kloepper, J. et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc. Natl Acad. Sci. USA 113, 4476–4481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eaak9670 (2017).

    Article  PubMed  Google Scholar 

  120. Peterson, T. E. et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc. Natl Acad. Sci. USA 113, 4470–4475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hasegawa, Y. et al. Transforming growth factor-β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91, 964–971 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Thomas, D. A. & Massague, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, F. et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7, 52294–52306 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Polanczyk, M. J., Walker, E., Haley, D., Guerrouahen, B. S. & Akporiaye, E. T. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4+CD25+Foxp3+ and CD4+CD25Foxp3+ T cells. J. Transl. Med. 17, 219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Liu, J. et al. TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 109, 16618–16623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liao, S. et al. TGF-β blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clin. Cancer Res. 17, 1415–1424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, S. et al. Cancer immunotherapy via targeted TGF-β signalling blockade in TH cells. Nature 587, 121–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, M. et al. TGF-β suppresses type 2 immunity to cancer. Nature 587, 115–120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Panagi, M. et al. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics 10, 1910–1922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Courau, T. et al. TGF-β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies. JCI Insight 1, e85974 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Horn, L. A. et al. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1-mediated tumor eradication. J. Clin. Invest. 132, e155148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Qin, Z. et al. A critical requirement of interferon γ-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res. 63, 4095–4100 (2003).

    CAS  PubMed  Google Scholar 

  134. Strieter, R. M., Burdick, M. D., Gomperts, B. N., Belperio, J. A. & Keane, M. P. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev. 16, 593–609 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Sato, N. et al. Actions of TNF and IFN-γ on angiogenesis in vitro. J. Invest. Dermatol. 95, 85S–89S (1990).

    Article  CAS  PubMed  Google Scholar 

  136. Zheng, X. et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J. Clin. Invest. 128, 2104–2115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, Q. et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD-1 blockade. Clin. Cancer Res. 26, 1712–1724 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wu, F. T. H. et al. Efficacy of cotargeting angiopoietin-2 and the VEGF pathway in the adjuvant postsurgical setting for early breast, colorectal, and renal cancers. Cancer Res. 76, 6988–7000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Di Tacchio, M. et al. Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. Cancer Immunol. Res. 7, 1910–1927 (2019).

    Article  PubMed  Google Scholar 

  142. Yang, H. et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J. Clin. Invest. 129, 4350–4364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hodi, F. S. et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res. 2, 632–642 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wu, X. et al. VEGF neutralization plus CTLA-4 blockade alters soluble and cellular factors associated with enhancing lymphocyte infiltration and humoral recognition in melanoma. Cancer Immunol. Res. 4, 858–868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wallin, J. J. et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 7, 12624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, J. et al. Multicenter phase II trial of camrelizumab combined with apatinib and eribulin in heavily pretreated patients with advanced triple-negative breast cancer. Nat. Commun. 13, 3011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Quintela-Fandino, M. et al. Immuno-priming durvalumab with bevacizumab in HER2-negative advanced breast cancer: a pilot clinical trial. Breast Cancer Res. 22, 124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Makker, V. et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 20, 711–718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Li, X., Kostareli, E., Suffner, J., Garbi, N. & Hammerling, G. J. Efficient Treg depletion induces T-cell infiltration and rejection of large tumors. Eur. J. Immunol. 40, 3325–3335 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Zheng, X. et al. CTLA4 blockade promotes vessel normalization in breast tumors via the accumulation of eosinophils. Int. J. Cancer 146, 1730–1740 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Carretero, R. et al. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat. Immunol. 16, 609–617 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Delyon, J. et al. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: an early increase in lymphocyte and eosinophil counts is associated with improved survival. Ann. Oncol. 24, 1697–1703 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Griffiths, M. R., Botto, M., Morgan, B. P., Neal, J. W. & Gasque, P. CD93 regulates central nervous system inflammation in two mouse models of autoimmune encephalomyelitis. Immunology 155, 346–355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sun, Y. et al. Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy. Sci. Transl. Med. 13, eabc8922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Palazon, A. et al. Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment of activated T lymphocytes. Cancer Res. 71, 801–811 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Hollenbaugh, D. et al. Expression of functional CD40 by vascular endothelial cells. J. Exp. Med. 182, 33–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  157. Dechanet, J. et al. CD40 ligand stimulates proinflammatory cytokine production by human endothelial cells. J. Immunol. 159, 5640–5647 (1997).

    Article  CAS  PubMed  Google Scholar 

  158. Albini, A. et al. Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: a gene therapy approach. Am. J. Pathol. 156, 1381–1393 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chelvanambi, M., Fecek, R. J., Taylor, J. L. & Storkus, W. J. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. J. Immunother. Cancer 9, e001906 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Lee, S. J. et al. STING activation normalizes the intraperitoneal vascular-immune microenvironment and suppresses peritoneal carcinomatosis of colon cancer. J. Immunother. Cancer 9, e002195 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wang-Bishop, L. et al. STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy. Sci. Immunol. 8, eadd1153 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lejeune, F. J., Lienard, D., Matter, M. & Ruegg, C. Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun. 6, 6 (2006).

    PubMed  Google Scholar 

  163. Grunhagen, D. J., de Wilt, J. H., ten Hagen, T. L. & Eggermont, A. M. Technology insight: utility of TNF-α-based isolated limb perfusion to avoid amputation of irresectable tumors of the extremities. Nat. Clin. Pract. Oncol. 3, 94–103 (2006).

    Article  PubMed  Google Scholar 

  164. Curnis, F., Sacchi, A. & Corti, A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J. Clin. Invest. 110, 475–482 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Elia, A. R. et al. Targeting tumor vasculature with TNF leads effector T cells to the tumor and enhances therapeutic efficacy of immune checkpoint blockers in combination with adoptive cell therapy. Clin. Cancer Res. 24, 2171–2181 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Shen, J. et al. Vascular-targeted TNFα and IFNγ inhibits orthotopic colorectal tumor growth. J. Transl. Med. 14, 187 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 18, 1207–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Johansson-Percival, A. et al. Intratumoral LIGHT restores pericyte contractile properties and vessel integrity. Cell Rep. 13, 2687–2698 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. He, B. et al. Vascular targeting of LIGHT normalizes blood vessels in primary brain cancer and induces intratumoural high endothelial venules. J. Pathol. 245, 209–221 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Herrera, F. G. et al. Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov. 12, 108–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Herrera, F. G., Irving, M., Kandalaft, L. E. & Coukos, G. Rational combinations of immunotherapy with radiotherapy in ovarian cancer. Lancet Oncol. 20, e417–e433 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Lugade, A. A. et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 174, 7516–7523 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Cheng, J. N. et al. Radiation-induced eosinophils improve cytotoxic T lymphocyte recruitment and response to immunotherapy. Sci. Adv. 7, eabc7609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Mpekris, F., Baish, J. W., Stylianopoulos, T. & Jain, R. K. Role of vascular normalization in benefit from metronomic chemotherapy. Proc. Natl Acad. Sci. USA 114, 1994–1999 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bocci, G. et al. Antiangiogenic and anticolorectal cancer effects of metronomic irinotecan chemotherapy alone and in combination with semaxinib. Br. J. Cancer 98, 1619–1629 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yousaf, I., Kaeppler, J., Frost, S., Seymour, L. W. & Jacobus, E. J. Attenuation of the hypoxia inducible factor pathway after oncolytic adenovirus infection coincides with decreased vessel perfusion. Cancers 12, 851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hou, W., Chen, H., Rojas, J., Sampath, P. & Thorne, S. H. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int. J. Cancer 135, 1238–1246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Frentzen, A. et al. Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumor therapy. Proc. Natl Acad. Sci. USA 106, 12915–12920 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Guse, K. et al. Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models. J. Virol. 84, 856–866 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. He, T. et al. Oncolytic adenovirus promotes vascular normalization and nonclassical tertiary lymphoid structure formation through STING-mediated DC activation. Oncoimmunology 11, 2093054 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Moon, E. K. et al. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines. Oncoimmunology 7, e1395997 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Wang, G. et al. CXCL11-armed oncolytic adenoviruses enhance CAR-T cell therapeutic efficacy and reprogram tumor microenvironment in glioblastoma. Mol. Ther. 31, 134–153 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Garcia-Caballero, M., Sokol, L., Cuypers, A. & Carmeliet, P. Metabolic reprogramming in tumor endothelial cells. Int. J. Mol. Sci. 23, 11052 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).

    Article  PubMed  Google Scholar 

  186. Cantelmo, A. R. et al. Inhibition of the glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell 30, 968–985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shan, Y. et al. Targeting tumor endothelial hyperglycolysis enhances immunotherapy through remodeling tumor microenvironment. Acta Pharm. Sin. B. 12, 1825–1839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cui, J. et al. JP1 normalizes tumor vasculature to suppress metastasis and facilitate drug delivery by inhibiting IL-8. JCI Insight 8, e161675 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Zhang, D. et al. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab. 35, 517–534.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Andrea, A. E. et al. Advances in CAR-T cell genetic engineering strategies to overcome hurdles in solid tumors treatment. Front. Immunol. 13, 830292 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Watson, H. A. et al. L-selectin enhanced T cells improve the efficacy of cancer immunotherapy. Front. Immunol. 10, 1321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kochl, R. et al. Corrigendum: WNK1 kinase balances T cell adhesion versus migration in vivo. Nat. Immunol. 18, 246 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Yamamoto, T. N. et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J. Clin. Invest. 129, 1551–1565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Chmielewski, M. & Abken, H. CAR T cells releasing IL-18 convert to T-Bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell Rep. 21, 3205–3219 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Kerkar, S. P. et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J. Clin. Invest. 121, 4746–4757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kuhn, N. F. et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35, 473–488.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Irving, M., Lanitis, E., Migliorini, D., Ivics, Z. & Guedan, S. Choosing the right tool for genetic engineering: clinical lessons from chimeric antigen receptor-T cells. Hum. Gene Ther. 32, 1044–1058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ciraolo, E. et al. Simultaneous genetic ablation of PD-1, LAG-3, and TIM-3 in CD8 T cells delays tumor growth and improves survival outcome. Int. J. Mol. Sci. 23, 3207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang, W. et al. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther. 20, 970–978 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Chinnasamy, D. et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest. 120, 3953–3968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ash, S. L. et al. Targeting the activated microenvironment with endosialin (CD248)-directed CAR-T cells ablates perivascular cells to impair tumor growth and metastasis. J. Immunother. Cancer 12, e008608 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Fierle, J. K. et al. Soluble trivalent engagers redirect cytolytic T cell activity toward tumor endothelial marker 1. Cell Rep. Med. 2, 100362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Xie, Y. J. et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc. Natl Acad. Sci. USA 116, 7624–7631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kershaw, M. H. et al. Generation of gene-modified T cells reactive against the angiogenic kinase insert ___domain-containing receptor (KDR) found on tumor vasculature. Hum. Gene Ther. 11, 2445–2452 (2000).

    Article  CAS  PubMed  Google Scholar 

  208. Xing, H. et al. Anti-tumor effects of vascular endothelial growth factor/vascular endothelial growth factor receptor binding ___domain-modified chimeric antigen receptor T cells. Cytotherapy 23, 810–819 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Lanitis, E. et al. VEGFR-2 redirected CAR-T cells are functionally impaired by soluble VEGF-A competition for receptor binding. J. Immunother. Cancer 9, e002151 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Lanitis, E. et al. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J. Exp. Med. 218, e20192203 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Byrd, T. T. et al. TEM8/ANTXR1-specific CAR T cells as a targeted therapy for triple-negative breast cancer. Cancer Res. 78, 489–500 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Petrovic, K. et al. TEM8/ANTXR1-specific CAR T cells mediate toxicity in vivo. PLoS ONE 14, e0224015 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Santoro, S. P. et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol. Res. 3, 68–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhuang, X. et al. CAR T cells targeting tumor endothelial marker CLEC14A inhibit tumor growth. JCI Insight 5, e138808 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Lanitis, E., Coukos, G. & Irving, M. All systems go: converging synthetic biology and combinatorial treatment for CAR-T cell therapy. Curr. Opin. Biotechnol. 65, 75–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  217. Chinnasamy, D. et al. Simultaneous targeting of tumor antigens and the tumor vasculature using T lymphocyte transfer synergize to induce regression of established tumors in mice. Cancer Res. 73, 3371–3380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lee, H. et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res. 23, 4190–4202 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Garaud, S., Dieu-Nosjean, M. C. & Willard-Gallo, K. T follicular helper and B cell crosstalk in tertiary lymphoid structures and cancer immunotherapy. Nat. Commun. 13, 2259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Skandha Gopalan, K. & Bergers, G. The pan-tumor vasculature under the transcriptomic magnifying glass. Cancer Res. 84, 3502–3504 (2024).

    Article  PubMed  Google Scholar 

  221. Onder, L. et al. Fibroblastic reticular cells generate protective intratumoral T cell environments in lung cancer. Cell 188, 430–446.e20 (2024).

    Article  PubMed  Google Scholar 

  222. Greene, E. et al. New interpretable machine-learning method for single-cell data reveals correlates of clinical response to cancer immunotherapy. Patterns 2, 100372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Ludwig Institute for Cancer Research, the University of Lausanne and the Lausanne University Hospital (CHUV), the Swiss National Science Foundation (SNSF# 310030_204326), the ISREC Foundation, the Fondazione Teofilo Rossi di Montelera e di Premuda, Cancera Foundation, and Biltema Foundation for their generous research support over the years. For this work, G.C. was funded by the Ludwig Institute for Cancer Research, as well as the CHUV and UNIL, and by generous grants from the Swiss National Science Foundation, Oncosuisse, the ISREC Foundation, Cancera Foundation, Mats Paulsson Foundation, and Biltema Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article. E.L. and M.I. contributed equally.

Corresponding author

Correspondence to George Coukos.

Ethics declarations

Competing interests

G.C. has received honoraria from Bristol-Myers Squibb. The CHUV has received honoraria for advisory services provided by G.C. to Iovance and EVIR. G.C. has also has received royalties from the University of Pennsylvania for CAR T cell therapy licensed to Novartis and Tmunity Therapeutics, and royalties from the Ludwig Institute for Cancer Research, UNIL and CHUV for NeoTIL intellectual property previously licensed to Tigen Pharma. G.C. is inventor in technologies related to T cell expansion and engineering for T cell therapy. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks Yi Fan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanitis, E., Irving, M. & Coukos, G. Tumour-associated vasculature in T cell homing and immunity: opportunities for cancer therapy. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01187-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01187-w

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer