Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Ionic potential for battery materials

Abstract

Developing high-performance rechargeable batteries requires a revolutionary advancement in battery materials, guided by a fundamental understanding of their underlying science and mechanisms. However, this task remains a challenge owing to the complex relationship among composition, structure and property in electrode and electrolyte materials. Ionic potential, a concept derived from geochemistry, has been incorporated into battery materials research since 2020 as a methodology for predicting and optimizing their functional properties. Defined as the ratio of charge number of an ion to its ionic radius, ionic potential serves as a measure of the interaction strength within the structure of a material. In this Perspective, we explore the role of ionic potential in guiding the design of advanced materials for rechargeable batteries. Specifically, we discuss how integrating ionic potential into material design frameworks can capture critical structural interactions, thereby enabling improvements in properties such as ionic conductivity, redox activity and phase transition behaviours. Furthermore, we identify the broader relevance of ionic potential in battery systems, highlighting its potential in advancing fundamental understanding and performance capabilities in battery technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ionic potential and its use in battery materials.
Fig. 2: Ionic potential for predicting the stacking structure of layered alkali-metal electrode materials.
Fig. 3: Ionic potential for predicting the close-packed anion sublattices of Li-ion halide electrolyte materials.
Fig. 4: Exploring new battery materials using ionic potential.
Fig. 5: Ionic potential for predicting the phase transition and redox behaviours of electrode materials.
Fig. 6: Extended application of ionic potential in batteries.

Similar content being viewed by others

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  3. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 46, 1053–1061 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Godshall, N. A., Raistrick, I. D. & Huggins, R. A. Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials. Mater. Res. Bull. 15, 561–570 (1980).

    Article  CAS  Google Scholar 

  6. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0<x<1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  CAS  Google Scholar 

  7. Ozawa, K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ion. 69, 212–221 (1994).

    Article  CAS  Google Scholar 

  8. Reimers, J. N. & Dahn, J. R. Electrochemical and in situ X‐ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).

    Article  CAS  Google Scholar 

  9. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G. & Kang, K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012).

    Article  CAS  Google Scholar 

  11. Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).

    Article  CAS  Google Scholar 

  12. Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Gong, Z. & Yang, Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 4, 3223–3242 (2011).

    Article  CAS  Google Scholar 

  14. Kim, T., Song, W., Son, D.-Y., Ono, L. K. & Qi, Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7, 2942–2964 (2019).

    Article  CAS  Google Scholar 

  15. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  CAS  Google Scholar 

  16. Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  18. Pan, H., Hu, Y.-S. & Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013).

    Article  CAS  Google Scholar 

  19. Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    Article  CAS  Google Scholar 

  20. Schweidler, S. et al. High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 9, 266–281 (2024).

    Article  Google Scholar 

  21. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976).

    Article  Google Scholar 

  22. Cartledge, G. H. Studies on the periodic system. i. The ionic potential as a periodic function1. J. Am. Chem. Soc. 50, 2855–2863 (1928).

    Article  CAS  Google Scholar 

  23. Railsback, L. B. An earth scientist’s periodic table of the elements and their ions. Geology 31, 737–740 (2003).

    Article  CAS  Google Scholar 

  24. Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).

    Article  CAS  Google Scholar 

  25. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).

    Article  CAS  Google Scholar 

  26. Hyooma, H. & Hayashi, K. Crystal structures of La3Li5M2O12 (M = Nb, Ta). Mater. Res. Bull. 23, 1399–1407 (1988).

    Article  CAS  Google Scholar 

  27. Deiseroth, H.-J. et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, 755–758 (2008).

    Article  CAS  Google Scholar 

  28. Railsback, L. B. An earth scientist’s periodic table of the elements and their ions. GSA Bull. 117, 746–746 (2005).

    Article  Google Scholar 

  29. Railsback, L. B. Some fundamentals of mineralogy and geochemistry. Univ. Georgia https://railsback.org/FundamentalsIndex.html (2006).

  30. Sun, Y., Guo, S. & Zhou, H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 12, 825–840 (2019).

    Article  CAS  Google Scholar 

  31. Rong, X. et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule 3, 503–517 (2019).

    Article  CAS  Google Scholar 

  32. Yu, H. et al. An ultrastable anode for long-life room-temperature sodium-ion batteries. Angew. Chem. Int. Ed. 53, 8963–8969 (2014).

    Article  CAS  Google Scholar 

  33. Thackeray, M. M. et al. Spinel electrodes for lithium batteries — a review. J. Power Sources 21, 1–8 (1987).

    Article  CAS  Google Scholar 

  34. Kim, H. et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater. 25, 3614–3622 (2013).

    Article  CAS  Google Scholar 

  35. Lee, B. et al. First-principles study of the reaction mechanism in sodium–oxygen batteries. Chem. Mater. 26, 1048–1055 (2014).

    Article  CAS  Google Scholar 

  36. Jian, Z. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 156–160 (2013).

    Article  CAS  Google Scholar 

  37. Kawai, K., Zhao, W., Nishimura, S. & Yamada, A. High-voltage Cr4+/Cr3+ redox couple in polyanion compounds. ACS Appl. Energy Mater. 1, 928–931 (2018).

    Article  CAS  Google Scholar 

  38. Jiang, Y. et al. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 5, 1402104 (2015).

    Article  Google Scholar 

  39. Zhao, C. et al. Novel methods for sodium-ion battery materials. Small Methods 1, 1600063 (2017).

    Article  Google Scholar 

  40. Kim, H. et al. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943 (2016).

    Article  Google Scholar 

  41. Yabuuchi, N. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Delmas, C., Fouassier, C. & Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C 99, 81–85 (1980).

    Article  CAS  Google Scholar 

  43. Fouassier, C., Delmas, C. & Hagenmuller, P. Evolution structurale et proprietes physiques des phases AxMO2 (A = Na, K; M = Cr, Mn, Co) (x ≤ 1). Mater. Res. Bull. 10, 443–449 (1975).

    Article  CAS  Google Scholar 

  44. Komaba, S. et al. Study on the reversible electrode reaction of Na1−xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery. Inorg. Chem. 51, 6211–6220 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Lu, Z. & Dahn, J. R. In situ X-ray diffraction study of P2Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 148, A1225–A1229 (2001).

    Article  CAS  Google Scholar 

  46. Billaud, J. et al. Na0.67Mn1−xMgxO2 (0≤x≤0.2): a high capacity cathode for sodium-ion batteries. Energy Environ. Sci. 7, 1387–1391 (2014).

    Article  CAS  Google Scholar 

  47. Gupta, A., Buddie Mullins, C. & Goodenough, J. B. Na2Ni2TeO6: evaluation as a cathode for sodium battery. J. Power Sources 243, 817–821 (2013).

    Article  CAS  Google Scholar 

  48. Li, Z.-Y. et al. New insights into designing high-rate performance cathode materials for sodium ion batteries by enlarging the slab-spacing of the Na-ion diffusion layer. J. Mater. Chem. A 4, 3453–3461 (2016).

    Article  CAS  Google Scholar 

  49. Su, J., Pei, Y., Yang, Z. & Wang, X. First-principles investigation on the structural, electronic properties and diffusion barriers of Mg/Al doped NaCoO2 as the cathode material of rechargeable sodium batteries. RSC Adv. 5, 27229–27234 (2015).

    Article  CAS  Google Scholar 

  50. Han, S. C. et al. Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries. J. Power Sources 277, 9–16 (2015).

    Article  CAS  Google Scholar 

  51. Sathiya, M. et al. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Adv. Energy Mater. 8, 1702599 (2018).

    Article  Google Scholar 

  52. Aguesse, F. et al. Structural and electrochemical analysis of Zn doped Na3Ni2SbO6 cathode for Na-ion battery. J. Power Sources 336, 186–195 (2016).

    Article  CAS  Google Scholar 

  53. Yuan, D. et al. A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries. Adv. Mater. 26, 6301–6306 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Seibel, E. M., Roudebush, J. H., Ali, M. N., Ross, K. A. & Cava, R. J. Structure and magnetic properties of the spin-1/2-based honeycomb NaNi2BiO6−δ and its hydrate NaNi2BiO6−δ·1.7H2O. Inorg. Chem. 53, 10989–10995 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Bhange, D. S. et al. Honeycomb-layer structured Na3Ni2BiO6 as a high voltage and long life cathode material for sodium-ion batteries. J. Mater. Chem. A 5, 1300–1310 (2017).

    Article  CAS  Google Scholar 

  56. Claude D., Fouassier, C. & Hagenmuller, P. Stabilite relative des environnements octaedrique et prismatique triangulaire dans les oxydes lamellaires alcalins AxMO2 (x≤1). Mater. Res. Bull. 11, 1483–1488 (1976).

    Article  Google Scholar 

  57. Rouxel, J. Sur un diagramme ionicité-structure pour les composes intercalaires alcalins des sulfures lamellaires. J. Solid State Chem. 17, 223–229 (1976).

    Article  CAS  Google Scholar 

  58. Pauling, L. The Nature of the Chemical Bond 3rd edn (Cornell Univ. Press, 1960).

  59. Guilmard, M., Croguennec, L. & Delmas, C. Effects of manganese substitution for nickel on the structural and electrochemical properties of LiNiO2. J. Electrochem. Soc. 150, A1287–A1293 (2003).

    Article  CAS  Google Scholar 

  60. Zhao, C., Avdeev, M., Chen, L. & Hu, Y.-S. An O3-type oxide with low sodium content as the phase-transition-free anode for sodium-ion batteries. Angew. Chem. Int. Ed. 57, 7056–7060 (2018).

    Article  CAS  Google Scholar 

  61. Zhao, C. et al. Rational design of layered oxide materials for sodium-ion batteries. Science 370, 708–711 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Shin, Y.-J. & Yi, M.-Y. Preparation and structural properties of layer-type oxides NaxNix/2Ti1−x/2O2 (0.60≤x≤1.0). Solid State Ion. 132, 131–141 (2000).

    Article  CAS  Google Scholar 

  63. Singh, G. et al. High voltage Mg-doped Na0.67Ni0.3−xMgxMn0.7O2 (x=0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chem. Mater. 28, 5087–5094 (2016).

    Article  Google Scholar 

  64. Wang, Q. et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nat. Mater. 20, 353–361 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Sato, T., Sato, K., Zhao, W., Kajiya, Y. & Yabuuchi, N. Metastable and nanosize cation-disordered rocksalt-type oxides: revisit of stoichiometric LiMnO2 and NaMnO2. J. Mater. Chem. A 6, 13943–13951 (2018).

    Article  CAS  Google Scholar 

  66. Uyama, T., Mukai, K. & Yamada, I. Synthesis of rhombohedral LiCo0.64Mn0.36O2 using a high-pressure method. Inorg. Chem. 58, 6684–6695 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Han, M. H. et al. Synthesis and electrochemistry study of P2- and O3-phase Na2/3Fe1/2Mn1/2O2. Electrochim. Acta 182, 1029–1036 (2015).

    Article  CAS  Google Scholar 

  68. Guo, H. et al. Predominant P3-type solid–solution phase transition enables high-stability O3-type Na-ion cathodes. ACS Appl. Mater. Interfaces 16, 27352–27359 (2024).

    Article  CAS  PubMed  Google Scholar 

  69. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  CAS  Google Scholar 

  70. Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Sakuda, A., Hayashi, A., Ohtomo, T., Hama, S. & Tatsumisago, M. All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J. Power Sources 196, 6735–6741 (2011).

    Article  CAS  Google Scholar 

  72. Maekawa, H. et al. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J. Am. Chem. Soc. 131, 894–895 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Article  Google Scholar 

  74. Li, X. et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. 13, 1429–1461 (2020).

    Article  CAS  Google Scholar 

  75. Kochetkov, I. et al. Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance. Energy Environ. Sci. 15, 3933–3944 (2022).

    Article  CAS  Google Scholar 

  76. Kwak, H. et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries. Nat. Commun. 14, 2459 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu, L. et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Nat. Commun. 14, 3807 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ishiguro, Y., Ueno, K., Nishimura, S., Iida, G. & Igarashib, Y. TaCl5-glassified ultrafast lithium ion-conductive halide electrolytes for high-performance all-solid-state lithium batteries. Chem. Lett. 52, 237–241 (2023).

    Article  CAS  Google Scholar 

  79. Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019).

    Article  CAS  Google Scholar 

  80. Wang, C., Liang, J., Kim, J. T. & Sun, X. Prospects of halide-based all-solid-state batteries: from material design to practical application. Sci. Adv. 8, eadc9516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, L. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article  CAS  Google Scholar 

  82. Louli, A. J. et al. Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells. J. Electrochem. Soc. 166, A1291 (2019).

    Article  CAS  Google Scholar 

  83. Schlem, R. et al. Mechanochemical synthesis: a tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M=Y, Er) superionic conductors. Adv. Energy Mater. 10, 1903719 (2020).

    Article  CAS  Google Scholar 

  84. Kwak, H. et al. Li+ conduction in aliovalent-substituted monoclinic Li2ZrCl6 for all-solid-state batteries: Li2+xZr1−xMxCl6 (M=In, Sc). Chem. Eng. J. 437, 135413 (2022).

    Article  CAS  Google Scholar 

  85. Mouta, R., Melo, M. Á. B., Diniz, E. M. & Paschoal, C. W. A. Concentration of charge carriers, migration, and stability in Li3OCl solid electrolytes. Chem. Mater. 26, 7137–7144 (2014).

    Article  CAS  Google Scholar 

  86. Zhao, C. et al. Solid-state sodium batteries. Adv. Energy Mater. 8, 1703012 (2018).

    Article  Google Scholar 

  87. Jun, K., Chen, Y., Wei, G., Yang, X. & Ceder, G. Diffusion mechanisms of fast lithium-ion conductors. Nat. Rev. Mater. 9, 887–905 (2024).

    Article  CAS  Google Scholar 

  88. Liu, Z. et al. Tuning collective anion motion enables superionic conductivity in solid-state halide electrolytes. Nat. Chem. 16, 1584–1591 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Bohnsack, A. et al. Ternäre halogenide vom Typ A3MX6. VI [1]. Ternäre Chloride der Selten-Erd-Elemente mit lithium, Li3MCl6 (M=Tb-Lu, Y, Sc): synthese, kristallstrukturen und ionenbewegung. Z. Anorg. Allg. Chem. 623, 1067–1073 (1997).

    Article  CAS  Google Scholar 

  90. Wang, K. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nat. Commun. 12, 4410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Elliott, S. R. in Physics of Amorphous Materials 2nd edn 139–151 (Longman, 1990).

  92. Greer, A. L. Intermetallic CompoundsPrinciples and Practice Vol. 1 (eds Westbrook, J. H. & Fleischer, R. L.) 731–754 (Wiley, 1995).

  93. Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, N. et al. The missing boundary in the phase diagram of PbZr1−xTixO3. Nat. Commun. 5, 5231 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362, 933–937 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, R. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, Q. et al. Designing lithium halide solid electrolytes. Nat. Commun. 15, 1050 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Antaya, M., Cearns, K., Preston, J. S., Reimers, J. N. & Dahn, J. R. In situ growth of layered, spinel, and rock‐salt LiCoO2 by laser ablation deposition. J. Appl. Phys. 76, 2799–2806 (1994).

    Article  CAS  Google Scholar 

  99. Kanno, R. et al. Synthesis, structure, and electrochemical properties of a new lithium iron oxide, LiFeO2, with a corrugated layer structure. J. Electrochem. Soc. 143, 2435 (1996).

    Article  CAS  Google Scholar 

  100. Sakurai, Y., Arai, H. & Yamaki, J.-i Preparation of electrochemically active α-LiFeO2 at low temperature. Solid State Ion. 113–115, 29–34 (1998).

    Article  Google Scholar 

  101. Werder, D. J., Chen, C. H., Cava, R. J. & Batlogg, B. Diffraction evidence for oxygen-vacancy ordering in annealed Ba2YCu3O7 (0.3≤δ≤0.4) superconductors. Phys. Rev. B 37, 2317–2319 (1988).

    Article  CAS  Google Scholar 

  102. Li, L. et al. Evolution of short-range order and its effects on the plastic deformation behavior of single crystals of the equiatomic Cr-Co-Ni medium-entropy alloy. Acta Mater. 243, 118537 (2023).

    Article  CAS  Google Scholar 

  103. Rossen, E., Reimers, J. N. & Dahn, J. R. Synthesis and electrochemistry of spinel LT-LiCoO2. Solid State Ion. 62, 53–60 (1993).

    Article  CAS  Google Scholar 

  104. Gummow, R. J., Thackeray, M. M., David, W. I. F. & Hull, S. Structure and electrochemistry of lithium cobalt oxide synthesised at 400 °C. Mater. Res. Bull. 27, 327–337 (1992).

    Article  CAS  Google Scholar 

  105. Wang, Q. et al. Chemical short-range disorder in lithium oxide cathodes. Nature 629, 341–347 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011).

    Article  CAS  Google Scholar 

  107. Okoshi, M., Yamada, Y., Yamada, A. & Nakai, H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents. J. Electrochem. Soc. 160, A2160–A2165 (2013).

    Article  CAS  Google Scholar 

  108. Han, M. H., Gonzalo, E., Singh, G. & Rojo, T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8, 81–102 (2015).

    Article  Google Scholar 

  109. Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y.-S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020).

    Article  CAS  Google Scholar 

  110. Kubota, K., Kumakura, S., Yoda, Y., Kuroki, K. & Komaba, S. Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals). Adv. Energy Mater. 8, 1703415 (2018).

    Article  Google Scholar 

  111. Zhao, C. et al. Ti substitution facilitating oxygen oxidation in Na2/3Mg1/3Ti1/6Mn1/2O2 cathode. Chem 5, 2913–2925 (2019).

    Article  CAS  Google Scholar 

  112. Kubota, K. et al. Impact of Mg and Ti doping in O3 type NaNi1/2Mn1/2O2 on reversibility and phase transition during electrochemical Na intercalation. J. Mater. Chem. A 9, 12830–12844 (2021).

    Article  CAS  Google Scholar 

  113. Han, M. H., Gonzalo, E., Casas-Cabanas, M. & Rojo, T. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources 258, 266–271 (2014).

    Article  CAS  Google Scholar 

  114. Zhou, Y.-N. et al. Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy. J. Mater. Chem. A 1, 11130–11134 (2013).

    Article  CAS  Google Scholar 

  115. Delmas, C., Braconnier, J.-J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 3–4, 165–169 (1981).

    Article  Google Scholar 

  116. Xie, Y. et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation. Adv. Energy Mater. 6, 1601306 (2016).

    Article  Google Scholar 

  117. Lee, E. et al. New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: instability of Fe3+/Fe4+ redox in α-NaFeO2. Chem. Mater. 27, 6755–6764 (2015).

    Article  CAS  Google Scholar 

  118. Susanto, D. et al. Anionic redox activity as a key factor in the performance degradation of NaFeO2 cathodes for sodium ion batteries. Chem. Mater. 31, 3644–3651 (2019).

    Article  CAS  Google Scholar 

  119. Vassilaras, P. et al. Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel. J. Mater. Chem. A 5, 4596–4606 (2017).

    Article  CAS  Google Scholar 

  120. Ding, F. et al. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries. Energy Storage Mater. 30, 420–430 (2020).

    Article  Google Scholar 

  121. Wang, Q. et al. Reaching the energy density limit of layered O3-NaNi0.5Mn0.5O2 electrodes via dual Cu and Ti substitution. Adv. Energy Mater. 9, 1901785 (2019).

    Article  Google Scholar 

  122. Ding, F. et al. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144, 8286–8295 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Maletti, S., Sarapulova, A., Schökel, A. & Mikhailova, D. Operando studies on the NaNi0.5Ti0.5O2 cathode for Na-ion batteries: elucidating titanium as a structure stabilizer. ACS Appl. Mater. Interfaces 11, 33923–33930 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, P.-F. et al. An abnormal 3.7-volt O3-type sodium-ion battery cathode. Angew. Chem. Int. Ed. 57, 8178–8183 (2018).

    Article  CAS  Google Scholar 

  125. Wang, Q. et al. Fast-charge high-voltage layered cathodes for sodium-ion batteries. Nat. Sustain. 7, 338–347 (2024).

    Article  Google Scholar 

  126. Liu, C., Neale, Z. G. & Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19, 109–123 (2016).

    Article  CAS  Google Scholar 

  127. Wu, D. et al. NaTiO2: a layered anode material for sodium-ion batteries. Energy Environ. Sci. 8, 195–202 (2015).

    Article  CAS  Google Scholar 

  128. Billaud, J. et al. β-NaMnO2: a high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 136, 17243–17248 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Ma, X., Chen, H. & Ceder, G. Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc. 158, A1307–A1312 (2011).

    Article  CAS  Google Scholar 

  130. Jo, I.-H. et al. The effect of electrolyte on the electrochemical properties of Na/α-NaMnO2 batteries. Mater. Res. Bull. 58, 74–77 (2014).

    Article  CAS  Google Scholar 

  131. Clément, R. J., Middlemiss, D. S., Seymour, I. D., Ilott, A. J. & Grey, C. P. Insights into the nature and evolution upon electrochemical cycling of planar defects in the β-NaMnO2 Na-ion battery cathode: an NMR and first-principles density functional theory approach. Chem. Mater. 28, 8228–8239 (2016).

    Article  Google Scholar 

  132. Cabana, J. et al. Study of the transition metal ordering in layered NaxNix/2Mn1−x/2O2 (2/3≤x≤1) and consequences of Na/Li exchange. Inorg. Chem. 52, 8540–8550 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Vassilaras, P., Ma, X., Li, X. & Ceder, G. Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc. 160, A207 (2013).

    Article  CAS  Google Scholar 

  134. Zhao, C., Lu, Y., Chen, L. & Hu, Y.-S. Ni-based cathode materials for Na-ion batteries. Nano Res. 12, 2018–2030 (2019).

    Article  CAS  Google Scholar 

  135. Zhou, P. et al. Synthesis, structure, and electrochemical properties of O′3-type monoclinic NaNi0.8Co0.15Al0.05O2 cathode materials for sodium-ion batteries. J. Mater. Chem. 7, 657–663 (2019).

    Article  CAS  Google Scholar 

  136. Vassilaras, P., Toumar, A. J. & Ceder, G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochem. Commun. 38, 79–81 (2014).

    Article  CAS  Google Scholar 

  137. Yuan, D. D., Wang, Y. X., Cao, Y. L., Ai, X. P. & Yang, H. X. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 7, 8585–8591 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Alvarado, J. et al. Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition. ACS Appl. Mater. Interfaces 9, 26518–26530 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Shanmugam, R. & Lai, W. Na2/3Ni1/3Ti2/3O2: ‘bi-functional’ electrode materials for Na-ion batteries. ECS Electrochem. Lett. 3, A23–A25 (2014).

    Article  CAS  Google Scholar 

  140. Kurbakov, A. I. et al. Long-range and short-range ordering in 2D honeycomb-lattice magnet Na2Ni2TeO6. J. Alloy Compd. 820, 153354 (2020).

    Article  CAS  Google Scholar 

  141. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Thackeray, M. M., David, W. I. F. & Goodenough, J. B. Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2). Mater. Res. Bull. 17, 785–793 (1982).

    Article  CAS  Google Scholar 

  143. Masquelier, C. & Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Jian, Z. et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 14, 86–89 (2012).

    Article  CAS  Google Scholar 

  145. Barpanda, P., Oyama, G., Nishimura, S.-I, Chung, S.-C. & Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Morgan, B. J. Mechanistic origin of superionic lithium diffusion in anion-disordered Li6PS5X argyrodites. Chem. Mater. 33, 2004–2018 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kraft, M. A. et al. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X=Cl, Br, I). J. Am. Chem. Soc. 139, 10909–10918 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Stamminger, A. R., Ziebarth, B., Mrovec, M., Hammerschmidt, T. & Drautz, R. Ionic conductivity and its dependence on structural disorder in halogenated argyrodites Li6PS5X (X = Br, Cl, I). Chem. Mater. 31, 8673–8678 (2019).

    Article  CAS  Google Scholar 

  149. Hartel, J. et al. Understanding lithium-ion transport in selenophosphate-based lithium argyrodites and their limitations in solid-state batteries. Chem. Mater. 35, 4798–4809 (2023).

    Article  CAS  Google Scholar 

  150. Schwietert, T. K. et al. Understanding the role of aliovalent cation substitution on the Li-ion diffusion mechanism in Li6+xP1−xSixS5Br argyrodites. Mater. Adv. 5, 1952–1959 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bernges, T., Culver, S. P., Minafra, N., Koerver, R. & Zeier, W. G. Competing structural influences in the Li superionic conducting argyrodites Li6PS5−xSexBr (0≤x≤1) upon Se substitution. Inorg. Chem. 57, 13920–13928 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Lavrinenko, A. K. et al. Optimizing ionic transport in argyrodites: a unified view on the role of sulfur/halide distribution and local environments. J. Mater. Chem. A 12, 26596–26611 (2024).

    Article  CAS  Google Scholar 

  153. Lee, J. et al. Disorder-dependent Li diffusion in Li6PS5Cl investigated by machine-learning potential. ACS Appl. Mater. Interfaces 16, 46442–46453 (2024).

    Article  CAS  PubMed  Google Scholar 

  154. Wang, P. et al. Fast ion conduction and its origin in Li6−xPS5−xBr1+x. Chem. Mater. 32, 3833–3840 (2020).

    Article  CAS  Google Scholar 

  155. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  156. Feng, X., Chien, P.-H., Patel, S., Wang, Y. & Hu, Y.-Y. Enhanced ion conduction in Li2.5Zn0.25PS4 via anion doping. Chem. Mater. 32, 3036–3042 (2020).

    Article  CAS  Google Scholar 

  157. You, Y., Celio, H., Li, J., Dolocan, A. & Manthiram, A. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 6480–6485 (2018).

    Article  CAS  Google Scholar 

  158. Shizuka, K., Kiyohara, C., Shima, K. & Takeda, Y. Effect of CO2 on layered Li1+zNi1−xyCoxMyO2 (M=Al, Mn) cathode materials for lithium ion batteries. J. Power Sources 166, 233–238 (2007).

    Article  CAS  Google Scholar 

  159. Sun, Y. et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration. ACS Appl. Energy Mater. 4, 2061–2067 (2021).

    Article  CAS  Google Scholar 

  160. Li, H. et al. Universal design strategy for air-stable layered Na-ion cathodes toward sustainable energy storage. Adv. Mater. 36, 2403073 (2024).

    Article  CAS  Google Scholar 

  161. Liu, D. et al. Recent progress in sulfide-based solid electrolytes for Li-ion batteries. Mater. Sci. Eng. B 213, 169–176 (2016).

    Article  CAS  Google Scholar 

  162. Tsukasaki, H. et al. Deterioration process of argyrodite solid electrolytes during exposure to humidity-controlled air. J. Power Sources 524, 231085 (2022).

    Article  CAS  Google Scholar 

  163. Chen, X. et al. Improved stability against moisture and lithium metal by doping F into Li3InCl6. J. Power Sources 545, 231939 (2022).

    Article  CAS  Google Scholar 

  164. Li, X. et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed. 58, 16427–16432 (2019).

    Article  CAS  Google Scholar 

  165. Zhan, C., Wu, T., Lu, J. & Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes — a critical review. Energy Environ. Sci. 11, 243–257 (2018).

    Article  CAS  Google Scholar 

  166. Choi, W. & Manthiram, A. Comparison of metal ion dissolutions from lithium ion battery cathodes. J. Electrochem. Soc. 153, A1760 (2006).

    Article  CAS  Google Scholar 

  167. Yang, Y. et al. Decoupling the air sensitivity of Na-layered oxides. Science 385, 744–752 (2024).

    Article  CAS  PubMed  Google Scholar 

  168. Langmuir, D. Aqueous environmental geochemistry. Eos Trans. AGU 78, 586–586 (1997).

    Article  Google Scholar 

  169. Dzombak, D. A. & Morel, F. M. M. Surface Complexation Modeling: Hydrous Ferric Oxide (Wiley, 1991).

  170. Yao, L.-H., Cao, W.-Q., Shu, J.-C., Cao, M.-S. & Sun, X.-D. Tailoring adsorption for tunable lithium ion storage and devices. Chem. Eng. J. 413, 127428 (2021).

    Article  CAS  Google Scholar 

  171. Zhang, M. et al. Adsorption-catalysis design in the lithium–sulfur battery. Adv. Energy Mater. 10, 1903008 (2020).

    Article  CAS  Google Scholar 

  172. Yan, C. et al. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 30, 1909887 (2020).

    Article  CAS  Google Scholar 

  173. Zhang, J.-N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019).

    Article  CAS  Google Scholar 

  174. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Article  CAS  Google Scholar 

  176. Wang, Q. et al. High entropy liquid electrolytes for lithium batteries. Nat. Commun. 14, 440 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang, Q. et al. Entropy-driven liquid electrolytes for lithium batteries. Adv. Mater. 35, 2210677 (2023).

    Article  CAS  Google Scholar 

  178. Wang, Q. et al. Clarifying the relationship between the lithium deposition coverage and microstructure in lithium metal batteries. J. Am. Chem. Soc. 144, 21961–21971 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, Q. et al. Interphase design for lithium-metal anodes. J. Am. Chem. Soc. 147, 9365–9377 (2025).

    Article  CAS  PubMed  Google Scholar 

  180. Bowen, N. L. The reaction principle in petrogenesis. J. Geol. 30, 177–198 (1922).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend sincere gratitude to L. B. Railsback from the University of Georgia for granting permission to adapt his original figures in this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion and researched data for the manuscript. Q.W. and C.Z. prepared and reviewed the manuscript.

Corresponding authors

Correspondence to Qidi Wang, Yong-Sheng Hu, Hong Li, Hui-Ming Cheng, Tianshou Zhao or Chenglong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Hu, YS., Li, H. et al. Ionic potential for battery materials. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00822-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-025-00822-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing