Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial interactions and ecology in fermented food ecosystems

Abstract

Fermented foods and beverages, produced by the intentional growth of microorganisms, have long been among the most widely consumed foods in the human diet. Whether microorganisms are added directly to food substrates, or the growth and activity of autochthonous microorganisms colonizing food substrates is encouraged by selective conditions, the production of organic acids, ethanol and other metabolic end products enhance the safety, shelf-life, sensory and functional properties of foods. Whereas some fermented foods may be produced by communities dominated by only a few taxa of limited phylogenetic diversity, others are produced through the concerted action of diverse microbial communities. In this Review, we describe the ecological interactions shaping microbial community structure and function across various categories of fermented foods by providing specific examples. We also describe how the manufacture, quality and sustainability of even traditional fermented foods can be improved by contemporary technologies. Finally, we briefly discuss current research on the ecological impact of microorganisms found in fermented food on the human gut.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactions between sessile and planktonic microorganisms.
Fig. 2: Abiotic and biotic interactions in miso fermentations.
Fig. 3: Abiotic and biotic interactions in sausage fermentation.
Fig. 4: Survival of fermentation-associated microorganisms during transit through the gut.

Similar content being viewed by others

References

  1. Boethius, A. Something rotten in Scandinavia: the world’s earliest evidence of fermentation. J. Archaeol. Sci. 66, 169–180 (2016).

    Article  Google Scholar 

  2. McGovern, P. E. et al. Fermented beverages of pre- and proto-historic China. Proc. Natl Acad. Sci. USA 101, 17593–17598 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller, E. R. et al. Establishment limitation constrains the abundance of lactic acid bacteria in the Napa cabbage phyllosphere. Appl. Environ. Microbiol. 85, e00269–19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma, Y. et al. Microbiota dynamics and volatile metabolite generation during sausage fermentation. Food Chem. 423, 136297 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Porter, J. R. Louis Pasteur. achievements and disappointments. Bacteriol. Rev. 25, 389–403 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marco, M. L. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 18, 196–208 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Steinkraus, K. H. in Handbook of Food and Beverage Fermentation Technology (eds Hui, Y. H. et al.) 1–8 (Marcel Dekker, 2004).

  8. Beresford, T. P., Fitzsimons, N. A., Brennan, N. L. & Cogan, T. M. Recent advances in cheese microbiology. Int. Dairy J. 11, 259–274 (2001).

    Article  CAS  Google Scholar 

  9. Venturini Copetti, M. Yeasts and molds in fermented food production: an ancient bioprocess. Curr. Opin. Food Sci. 25, 57–61 (2019).

    Article  Google Scholar 

  10. Benítez-Cabello, A., Delgado, A. M. & Quintas, C. Main challenges expected from the impact of climate change on microbial biodiversity of table olives: current status and trends. Foods 12, 3712 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Choudoir, M. J., Barberán, A., Menninger, H. L., Dunn, R. R. & Fierer, N. Variation in range size and dispersal capabilities of microbial taxa. Ecology 99, 322–334 (2018).

    Article  PubMed  Google Scholar 

  12. Gomes, S. I. F. et al. Microbiota in dung and milk differ between organic and conventional dairy farms. Front. Microbiol. 11, 1746 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Streule, S., Freimüller Leischtfeld, S., Galler, M. & Miescher Schwenninger, S. Monitoring of cocoa post-harvest process practices on a small-farm level at five locations in Ecuador. Heliyon 8, e09628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reese, A. T., Madden, A. A., Joossens, M., Lacaze, G. & Dunn, R. R. Influences of ingredients and bakers on the bacteria and fungi in sourdough starters and bread. mSphere 5, e00950–19 (2020). Analysis of potential sources of microorganisms and their influence on composition and function of sourdough communities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Einson, J. E. et al. A vegetable fermentation facility hosts distinct microbiomes reflecting the production environment. Appl. Environ. Microbiol. 84, e01680–18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bokulich, N. A., Ohta, M., Lee, M. & Mills, D. A. Indigenous bacteria and fungi drive traditional Kimoto sake fermentations. Appl. Environ. Microbiol. 80, 5522–5529 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Alexa, E. A. et al. The detailed analysis of the microbiome and resistome of artisanal blue-veined cheeses provides evidence on sources and patterns of succession linked with quality and safety traits. Microbiome 12, 78 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hutkins, R. Microbiology and Technology of Fermented Foods 2nd edn (Wiley-Blackwell, 2018).

  19. Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial ecosystems. Cell 161, 49–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Gänzle, M. G. et al. Starter culture development and innovation for novel fermented foods. Annu. Rev. Food Sci. Technol. 15, 211–239 (2024).

    Article  PubMed  Google Scholar 

  21. Johansen, E. Use of natural selection and evolution to develop new starter cultures for fermented foods. Annu. Rev. Food Sci. Technol. 9, 411–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Wolfe, B. E., Button, J. E., Santarelli, M. & Dutton, R. J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158, 422–433 (2014). Early example of the use of in vitro studies to gain mechanistic insights into microbial interactions important for cheese ripening.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rousseau, G. M. & Moineau, S. Evolution of Lactococcus lactis phages within a cheese factory. Appl. Environ. Microbiol. 75, 5336–5344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spus, M. et al. Strain diversity and phage resistance in complex dairy starter cultures. J. Dairy Res. 98, 5173–5182 (2015). Characterization of the role of bacteriophage predation in community stability and function during the production of Gouda cheese.

    CAS  Google Scholar 

  25. Karahadian, C. & Lindsay, R. C. Integrated roles of lactate, ammonia, and calcium in texture development of mold surface-ripened cheese. J. Dairy Sci. 70, 909–918 (1987).

    Article  CAS  Google Scholar 

  26. Galli, B. D., Martin, J. G. P., da Silva, P. P. M., Porto, E. & Spoto, M. H. F. Sensory quality of Camembert-type cheese: relationship between starter cultures and ripening molds. Int. J. Food Microbiol. 234, 71–75 (2016). Study reporting on the interplay between moulds and lactic acid bacteria and their effects on cheese properties.

    Article  CAS  PubMed  Google Scholar 

  27. Gillot, G. et al. Functional diversity within the Penicillium roqueforti species. Int. J. Food Microbiol. 241, 141–150 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Caron, T. et al. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. Int. J. Food Microbiol. 354, 109174 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Dalzini, E. et al. Listeria monocytogenes in Gorgonzola cheese: study of the behavior throughout the process and growth predictioni during shelf life. Int. J. Food Microbiol. 262, 71–79 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Irlinger, F., Layec, S., Hélinck, S. & Dugat-Bony, E. Cheese rind microbial communities: diversity, composition and origin. FEMS Microbiol. Lett. 362, 1–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Gori, K., Sørensen, L. M., Petersen, M. A., Jespersen, L. & Arneborg, N. Debaryomyces hansenii strains differ in their production of flavor compounds in a cheese-surface model. MicrobiologyOpen 1, 161–168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Decadt, H., Vermote, L., Díaz-Muñoz, C., Weckx, S. & De Vuyst, L. Decarboxylase activity of the non-starter lactic acid bacterium Loigolactobacillus rennini gives crack defects in Gouda cheese through the production of γ-aminobutyric acid. Appl. Environ. Microbiol. 90, e0165523 (2024).

    Article  PubMed  Google Scholar 

  33. Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S. & Sathishkumar, M. A review on kombucha tea — microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 13, 538–550 (2014).

    Article  PubMed  Google Scholar 

  34. Huang, X., Xin, Y. & Lu, T. A systematic, complexity-reduction approach to dissect the kombucha tea microbiome. eLife 11, e76401 (2022). Use of systems biology and synthetic communities to understand the interactions among members of the symbiotic culture of bacteria and yeasts in kombucha.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coton, M. et al. Unraveling microbial ecology of industrial-scale kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 93, fix048 (2017).

    Article  Google Scholar 

  36. Harrison, K. & Curtin, C. Microbial composition of SCOBY starter cultures used by commercial kombucha brewers in North America. Microorganisms 9, 1060 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Landis, E. A. et al. Microbial diversity and interaction specificity in kombucha tea fermentations. mSystems 7, e0015722 (2022).

    Article  PubMed  Google Scholar 

  38. Villarreal-Soto, S. A. et al. Metabolome-microbiome signatures in the fermented beverage, kombucha. Int. J. Food Microbiol. 333, 108778 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021). Detailed analysis of microbial interactions in planktonic and sessile populations in kefir.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan, D., Stoyanova, L. G. & Netrusov, A. I. Microbiome and metabiotic properties of kefir grains and kefirs based on them. Microbiology 91, 339–355 (2022).

    Article  Google Scholar 

  41. Walsh, A. M. et al. Microbial succession and flavor production in the fermented dairy beverage kefir. mSystems 1, e00052–16 (2016). Study describing the succession of microorganisms during kefir fermentation and the correlation with flavour and health.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vegas, C. et al. Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int. J. Food Microbiol. 138, 130–136 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Z. et al. Research advances in technologies and mechanisms to regulate vinegar flavor. Food Chem. 460, 140783 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Yun, J. H., Kim, J. H. & Lee, J.-E. Surface film formation in static-fermented rice vinegar: a case study. Mycobiology 47, 250–255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Allwood, J. G., Wakeling, L. T. & Bean, D. C. Fermentation and the microbial community of Japanese koji and miso: a review. J. Food Sci. 86, 2194–2207 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Onda, T. et al. Analysis of lactic acid bacterial flora during miso fermentation. Food Sci. Technol. Res. 9, 17–24 (2003).

    Article  Google Scholar 

  47. Onda, T., Yanagida, F., Tsuji, M., Shinohara, T. & Yokotsuka, K. Time series analysis of aerobic bacterial flora during miso fermentation. Lett. Appl. Microbiol. 37, 162–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Kusumoto, K.-I. et al. Japanese traditional miso and koji making. J. Fungi 7, 579 (2021).

    Article  CAS  Google Scholar 

  49. Koide, R. T., Kanauchi, M. & Hashimoto, Y. Variation among Japanese miso breweries in indoor microbiomes is mainly ascribed to variation in type of indoor surface. Curr. Microbiol. 81, 68 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kothe, C. I. et al. Novel misos shape distinct microbial ecologies: opportunities for flavourful sustainable food innovation. Food Res. Int. 189, 114490 (2024). Study describing how novel miso substrates can lead to distinct microbial communities with novel properties.

    Article  CAS  PubMed  Google Scholar 

  51. Bouchez, A. & De Vuyst, L. Acetic acid bacteria in sour beer production: friend or foe? Front. Microbiol. 13, 957167 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bongaerts, D., De Roos, J. & De Vuyst, L. Technological and environmental features determine the uniqueness of the lambic beer microbiota and production process. Appl. Environ. Microbiol. 87, e0061221 (2021). Review discussing that lambic beer fermentation relies on a succession of microorganisms that originate from the environment to produce the characteristic properties of this beer.

    Article  PubMed  Google Scholar 

  53. Spitaels, F. et al. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE 9, e95384 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. De Roos, J. & De Vuyst, L. Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. J. Sci. Food Agric. 99, 25–38 (2019).

    Article  PubMed  Google Scholar 

  55. Leroy, F., Verluyten, J. & De Vuyst, L. Functional meat starter cultures for improved sausage fermentation. Int. J. Food Microbiol. 106, 270–285 (2006).

    Article  PubMed  Google Scholar 

  56. Bedale, W., Sindelar, J. J. & Milkowski, A. L. Dietary nitrate and nitrite: benefits, risks, and evolving perceptions. Meat Sci. 120, 85–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Leroy, F., Charmpi, C. & De Vuyst, L. Meat fermentation at a crossroads: where the age-old interplay of human, animal, and microbial diversity and contemporary markets meet. FEMS Microbiol. Rev. 47, fuad016 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, K. et al. Metabolic cross-feeding enhances branched-chain aldehydes production in a synthetic community of fermented sausages. Int. J. Food Microbiol. 407, 110373 (2023). Characterization of metabolic cross-feeding that occurs between bacteria and fungi during sausage fermentation.

    Article  CAS  PubMed  Google Scholar 

  59. Rong, L. et al. Fungal–bacterial mutualism: species and strain-dependent simultaneous modulation of branched-chain esters and indole derivatives in fermented sausages through metabolite cross-feeding. J. Agric. Food Chem. 72, 8749–8759 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Janßen, D., Dworschak, L., Ludwig, C., Ehrmann, M. A. & Vogel, R. F. Interspecies assertiveness of Lactobacillus curvatus and Lactobacillus sakei in sausage fermentations. Int. J. Food Microbiol. 331, 108689 (2020).

    Article  PubMed  Google Scholar 

  61. Premi, L. et al. Coagulase-negative staphylococci enhance the colour of fermented meat through a complex cross-talk between the arginase and nitric oxide synthase activities. LWT 202, 116333 (2024).

    Article  CAS  Google Scholar 

  62. Iacumin, L. et al. Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiol. 26, 65–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Magistà, D. et al. Penicillium salamii strain ITEM 15302: a new promising fungal starter for salami production. Int. J. Food Microbiol. 231, 33–41 (2016).

    Article  PubMed  Google Scholar 

  64. Laranjo, M., Potes, M. E. & Elias, M. Role of starter cultures on the safety of fermented meat products. Front. Microbiol. 10, 853 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yu, A. O., Leveau, J. H. J. & Marco, M. L. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environ. Microbiol. Rep. 12, 16–29 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, S. H., Jung, J. Y. & Jeon, C. O. Source tracking and succession of kimchi lactic acid bacteria during fermentation. J. Food Sci. 80, M1871–M1877 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Song, H. S. et al. Microbial niches in raw ingredients determine microbial community assembly during kimchi fermentation. Food Chem. 318, 126481 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, S. H., Whon, T. W., Roh, S. W. & Jeon, C. O. Unraveling microbial fermentation features in kimchi: from classical to meta-omics approaches. Appl. Microbiol. Biotechnol. 104, 7731–7744 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, J. Y. et al. Long-term population dynamics of viable microbes in a closed ecosystem of fermented vegetables. Food Res. Int. 154, 111044 (2022).

    Article  PubMed  Google Scholar 

  70. Galimberti, A. et al. Fermented food products in the era of globalization: tradition meets biotechnology innovations. Curr. Opin. Biotechnol. 70, 36–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Louw, N. L., Lele, K., Ye, R., Edwards, C. B. & Wolfe, B. E. Microbiome assembly in fermented foods. Annu. Rev. Microbiol. 77, 381–402 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Nikoloudaki, O., Aheto, F., Di Cagno, R. & Gobbetti, M. Synthetic microbial communities: a gateway to understanding resistance, resilience, and functionality in spontaneously fermented food microbiomes. Food Res. Int. 192, 114780 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. Jin, R. et al. Synthetic microbial communities: novel strategies to enhance the quality of traditional fermented foods. Compr. Rev. Food Sci. Food Saf. 23, e13388 (2024).

    Article  CAS  PubMed  Google Scholar 

  74. Teusink, B. & Molenaar, D. Systems biology of lactic acid bacteria: for food and thought. Curr. Opin. Syst. Biol. 6, 7–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl Acad. Sci. USA 111, E139–E148 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Ju, W. et al. Seasonal variation of metabolites in kimchi cabbage: utilizing metabolomics based machine learning for cultivation season and taste discrimination. Hortic. Environ. Biotechnol. https://doi.org/10.1007/s13580-024-00624-4 (2024).

  77. Liu, J., Chan, S. H. J., Chen, J., Solem, C. & Jensen, P. R. Systems biology — a guide for understanding and developing improved strains of lactic acid bacteria. Front. Microbiol. 10, 876 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hutzler, M., Morrissey, J. P., Laus, A., Meussdoerffer, F. & Zarnkow, M. A new hypothesis for the origin of the lager yeast Saccharomyces pastorianus. FEMS Yeast Res. 23, foad023 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Knudsen, S. Starters. J. Dairy Res. 2, 137–163 (1931).

    Article  Google Scholar 

  80. Ross, R. P., Morgan, S. & Hill, C. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79, 3–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Tamang, J. P. et al. Fermented foods in a global age: east meets west. Compr. Rev. Food Sci. Food Saf. 19, 184–217 (2020).

    Article  PubMed  Google Scholar 

  82. Coelho, M. C., Malcata, F. X. & Silva, C. C. G. Lactic acid bacteria in raw-milk cheeses: from starter cultures to probiotic functions. Foods 11, 2276 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, D.-H., Jeong, D., Song, K.-Y. & Seo, K.-H. Comparison of traditional and backslopping methods for kefir fermentation based on physicochemical and microbiological characteristics. LWT 97, 503–507 (2018).

    Article  CAS  Google Scholar 

  84. Leech, J. et al. Fermented-food metagenomics reveals substrate-associated differences in taxonomy and health-associated and antibiotic resistance determinants. mSystems 5, e00522–20 (2020). Analysis of metagenomes from fermented foods, sorted by substrate and composition, to identify functional traits of fermentation-associated microbiomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mukherjee, A., Breselge, S., Dimidi, E., Marco, M. L. & Cotter, P. D. Fermented foods and gastrointestinal health: underlying mechanisms. Nat. Rev. Gastroenterol. Hepatol. 21, 248–266 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Valentino, V. et al. Fermented foods, their microbiome and its potential in boosting human health. Microb. Biotechnol. 17, e14428 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hernández-Velázquez, R. et al. The future is fermented: microbial biodiversity of fermented foods is a critical resource for food innovation and human health. Trends Food Sci. Tech. 150, 104569 (2024).

    Article  Google Scholar 

  88. Kim, E., Cho, E.-J., Yang, S.-M. & Kim, H.-Y. Identification and monitoring of Lactobacillus delbrueckii subspecies using pangenomic-based novel genetic markers. J. Microbiol. Biotechnol. 31, 280–289 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, M. et al. Annotation of 2,507 Saccharomyces cerevisiae genomes. Microbiol. Spectr. 12, e0358223 (2024).

    Article  PubMed  Google Scholar 

  90. Karabín, M., Jelínek, L., Kotrba, P., Cejnar, R. & Dostálek, P. Enhancing the performance of brewing yeasts. Biotechnol. Adv. 36, 691–706 (2018).

    Article  PubMed  Google Scholar 

  91. Gibson, B. et al. Adaptive laboratory evolution of ale and lager yeasts for improved brewing efficiency and beer quality. Annu. Rev. Food Sci. Technol. 11, 23–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Calabrese, F. M. et al. Metabolic framework of spontaneous and synthetic sourdough metacommunities to reveal microbial players responsible for resilience and performance. Microbiome 10, 148 (2022). Comprehensive analysis of microbial interactions important for the performance of sourdough communities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cvetković, D. et al. An artificial neural network as a tool for kombucha fermentation improvement. Chem. Ind. Chem. Eng. Q. 28, 277–286 (2022).

    Article  Google Scholar 

  94. Wu, L. et al. Improving the aroma profile of inoculated fermented sausages by constructing a synthetic core microbial community. J. Food Sci. 88, 4388–4402 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Jia, Y. et al. A bottom-up approach to develop a synthetic microbial community model: application for efficient reduced-salt broad bean paste fermentation. Appl. Environ. Microbiol. 86, e00306–e00320 (2020). A systems approach to improve the health benefits of a fermented food by sodium reduction, while maintaining microbiological safety.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Illikoud, N., do Carmo, F. L. R., Daniel, N., Jan, G. & Gagnaire, V. Development of innovative fermented products by exploiting the diversity of immunomodulatory properties and fermentative activity of lactic and propionic acid bacteria. Food Res. Int. 166, 112557 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Pswarayi, F. & Gänzle, M. G. Composition and origin of the fermentation microbiota of mahewu, a Zimbabwean fermented cereal beverage. Appl. Environ. Microbiol. 85, e03130–18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bender, D. et al. Effects of selected lactobacilli on the functional properties and stability of gluten-free sourdough bread. Eur. Food Res. Technol. 244, 1037–1046 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Vaštík, P. et al. Potential of non-Saccharomyces yeast to produce non-alcoholic beer. FEMS Yeast Res. 22, foac039 (2022).

    Article  PubMed  Google Scholar 

  100. Yabaci Karaoglan, S., Jung, R., Gauthier, M., Kinčl, T. & Dostálek, P. Maltose-negative yeast in non-alcoholic and low-alcoholic beer production. Fermentation 8, 273 (2022).

    Article  CAS  Google Scholar 

  101. Park, J.-S. et al. Characterization of Lactobacillus fermentum PL9988 isolated from healthy elderly Korean in a longevity village. J. Microbiol. Biotechnol. 25, 1510–1518 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Pasolli, E. et al. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nat. Commun. 11, 2610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). A study providing clear evidence of the responsiveness of gut microbiota to diet, including transitory compositional changes in response to fermented foods.

    Article  CAS  PubMed  Google Scholar 

  104. Taylor, B. C. et al. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. mSystems 5, e00901–e00919 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Berg, R. D. The indigenous gastrointestinal microflora. Trends Microbiol. 4, 430–435 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Savage, D. C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977).

    Article  CAS  PubMed  Google Scholar 

  107. Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nielsen, E. S. et al. Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation — a pilot study. Food Funct. 9, 5323–5335 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Cannavale, C. N. et al. Consumption of a fermented dairy beverage improves hippocampal-dependent relational memory in a randomized, controlled cross-over trial. Nutr. Neurosci. 26, 265–274 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Roselli, M. et al. Colonization ability and impact on human gut microbiota of foodborne microbes from traditional or probiotic-added fermented foods: a systematic review. Front. Nutr. 8, 689084 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Carlino, N. et al. Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome. Cell 187, 5775–5795.e15 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Derrien, M. & van Hylckama Vlieg, J. E. T. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 23, 354–366 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Galena, A. E. et al. The effects of fermented vegetable consumption on the composition of the intestinal microbiota and levels of inflammatory markers in women: a pilot and feasibility study. PLoS ONE 17, e0275275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baron, M. et al. The effects of fermented vegetables on the gut microbiota for prevention of cardiovascular disease. Gut Microbiome 5, e6 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Marsh, P. D. & Percival, R. S. The oral microflora-friend or foe? Can we decide? Int. Dent. J. 56, 233–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Yang, I., Nell, S. & Suerbaum, S. Survival in hostile territory: the microbiota of the stomach. FEMS Microbiol. Rev. 37, 736–761 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Martinez-Guryn, K. et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23, 458–469.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Woelfel, S., Silva, M. S. & Stecher, B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 32, 820–836 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. McKenney, E. A. et al. Sourdough starters exhibit similar succession patterns but develop flour-specific climax communities. PeerJ 11, e16163 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Gänzle, M. G. & Zheng, J. Lifestyles of sourdough lactobacilli — do they matter for microbial ecology and bread quality? Int. J. Food Microbiol. 302, 15–23 (2019).

    Article  PubMed  Google Scholar 

  123. Gänzle, M. & Ripari, V. Composition and function of sourdough microbiota: from ecological theory to bread quality. Int. J. Food Microbiol. 239, 19–25 (2016).

    Article  PubMed  Google Scholar 

  124. Liu, D., Chen, Q., Zhang, P., Chen, D. & Howell, K. S. The fungal microbiome is an important component of vineyard ecosystems and correlates with regional distinctiveness of wine. mSphere 5, e00534–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Steenwerth, K. L. et al. Fungal and bacterial communities of ‘Pinot noir’ must: effects of vintage, growing region, climate, and basic must chemistry. PeerJ 9, e10836 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lin, X. et al. Sodium reduction in traditional fermented foods: challenges, strategies, and perspectives. J. Agric. Food Chem. 69, 8065–8080 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Aghababaie, M., Khanahmadi, M. & Beheshti, M. Developing a kinetic model for co-culture of yogurt starter bacteria growth in pH controlled batch fermentation. J. Food Eng. 166, 72–79 (2015).

    Article  CAS  Google Scholar 

  128. Jung, S., Hwang, I. M. & Lee, J.-H. Temperature impact on microbial and metabolic profiles in kimchi fermentation. Heliyon 10, e27174 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pérez-Díaz, I. M. et al. in Compendium of Methods for the Microbiological Examination of Foods 4th edn (eds Downes, F. P. & Ito, K.) 521–532 (American Public Health Association, 2013).

  130. Capece, A., Pietrafesa, R., Siesto, G. & Romano, P. Biotechnological approach based on selected Saccharomyces cerevisiae starters for reducing the use of sulfur dioxide in wine. Microorganisms 8, 738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shakil, M. H. et al. Nitrites in cured meats, health risk issues, alternatives to nitrites: a review. Foods 11, 3355 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, M. & Nauta, A. In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus thermophilus reveals protocooperation in yogurt manufacturing. Appl. Environ. Microbiol. 75, 4120–4129 (2009). A study describing how horizontal gene transfer among yoghurt microorganisms has facilitated cooperation and adaptation to the milk environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kerjean, J.-R. et al. Improving the quality of European hard-cheeses by controlling of interactions between lactic acid bacteria and propionibacteria. Food Res. Int. 33, 281–287 (2000).

    Article  Google Scholar 

  134. Sieuwerts, S., de Bok, F. A. M., Hugenholtz, J. & van Hylckama Vlieg, J. E. T. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl. Environ. Microbiol. 74, 4997–5007 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Landis, E. A. et al. The diversity and function of sourdough starter microbiomes. eLife 10, e61644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Oshiro, M., Tanaka, M., Momoda, R., Zendo, T. & Nakayama, J. Mechanistic insight into yeast bloom in a lactic acid bacteria relaying-community in the start of sourdough microbiota evolution. Microbiol. Spectr. 9, e00662–21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. De Vuyst, L., Vrancken, G., Ravyts, F., Rimaux, T. & Weckx, S. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol. 26, 666–675 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Nebraska Food for Health Center.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jennifer M. Auchtung or Robert Hutkins.

Ethics declarations

Competing interests

R.H. is a founder and adviser to Synbiotic Health, and J.M.A has financial interest in Synbiotic Health. H.E.H.-A. declares no competing interest.

Peer review

Peer review information

Nature Reviews Microbiology thanks Luca Coccolin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auchtung, J.M., Hallen-Adams, H.E. & Hutkins, R. Microbial interactions and ecology in fermented food ecosystems. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-025-01191-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-025-01191-w

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology