Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pseudomonas aeruginosa: ecology, evolution, pathogenesis and antimicrobial susceptibility

Abstract

Pseudomonas aeruginosa has long served as a model organism in microbiology, particularly for studies on gene expression, quorum sensing, antibiotic resistance, virulence and biofilm formation. Its genetic tractability has advanced the understanding of complex regulatory networks and experimental evolution. The versatility of this bacterium stems from its genomic variability, metabolic flexibility and phenotypic diversity, enabling it to thrive in diverse environments, both as a harmless saprophyte and an opportunistic human pathogen. P.aeruginosa can cause acute and chronic human infections, particularly in patients with underlying immune deficiencies. Its intrinsic antibiotic tolerance and resistance, together with its ability to produce multiple virulence factors while rapidly adapting to infection conditions, pose a major clinical challenge. In this Review, we explore key features contributing to the ecological and pathogenic versatility of P.aeruginosa. We examine the molecular mechanisms and ecological and evolutionary implications of quorum sensing and biofilm formation. We explore the virulence strategies and in vivo fitness determinants, as well as the evolutionary dynamics and global epidemiology of P.aeruginosa, with a focus on antimicrobial resistance. Finally, we discuss emerging strategies to control P.aeruginosa infections and address outstanding questions in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ecology of Pseudomonas aeruginosa.
Fig. 2: The quorum sensing circuitry and biofilm formation of Pseudomonas aeruginosa.
Fig. 3: Antimicrobial resistance, antimicrobial tolerance and heteroresistance in Pseudomonas aeruginosa.
Fig. 4: Virulence factors of Pseudomonas aeruginosa.

Similar content being viewed by others

References

  1. Gessard, C. Classics in infectious diseases. On the blue and green coloration that appears on bandages. By Carle Gessard (1850–1925). Rev. Infect. Dis. 6, S775–S776 (1984).

    Article  Google Scholar 

  2. Crone, S. et al. The environmental occurrence of Pseudomonas aeruginosa. APMIS 128, 220–231 (2020). In this study, the authors reevaluate the ubiquitous presence of P. aeruginosa, which is generally rare in pristine environments but shows a higher prevalence in areas impacted by human activities.

    Article  CAS  PubMed  Google Scholar 

  3. Micek, S. T. et al. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob. Agents Chemother. 49, 1306–1311 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Newman, J. N., Floyd, R. V. & Fothergill, J. L. Invasion and diversity in Pseudomonas aeruginosa urinary tract infections. J. Med. Microbiol. 71, 001458 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gitter, A., Mena, K. D., Mendez, K. S., Wu, F. & Gerba, C. P. Eye infection risks from Pseudomonas aeruginosa via hand soap and eye drops. Appl. Environ. Microbiol. 90, e0211923 (2024).

    Article  PubMed  Google Scholar 

  6. Turner, K. H., Everett, J., Trivedi, U., Rumbaugh, K. P. & Whiteley, M. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet. 10, e1004518 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rossi, E. et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 19, 331–342 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Martinez-Solano, L., Macia, M. D., Fajardo, A., Oliver, A. & Martinez, J. L. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin. Infect. Dis. 47, 1526–1533 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez-Barat, L. et al. Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J. Infect. 74, 142–152 (2017).

    Article  PubMed  Google Scholar 

  10. Cao, P. et al. A Pseudomonas aeruginosa small RNA regulates chronic and acute infection. Nature 618, 358–364 (2023). In this study, the authors identify the oxygen-responsive small RNA SicX as the chronic-to-acute switch in P. aeruginosa during mammalian infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. CDC https://www.cdc.gov/drugresistance/biggest-threats.html (2019).

  12. Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Woodford, N., Turton, J. F. & Livermore, D. M. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 35, 736–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, P. K., Van Kessel, A. T. M., Colavita, A., Hancock, R. E. W. & Mah, T. F. A novel small RNA is important for biofilm formation and pathogenicity in Pseudomonas aeruginosa. PLoS ONE 12, e0182582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gomez-Lozano, M., Marvig, R. L., Molin, S. & Long, K. S. Genome-wide identification of novel small RNAs in Pseudomonas aeruginosa. Environ. Microbiol. 14, 2006–2016 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Wurtzel, O. et al. The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog. 8, e1002945 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Green, S. K., Schroth, M. N., Cho, J. J., Kominos, S. K. & Vitanza-jack, V. B. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl. Microbiol. 28, 987–991 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan, N. H. et al. Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates. Microb. Ecol. 53, 173–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Haritash, A. K. & Kaushik, C. P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater. 169, 1–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Rybtke, M., Hultqvist, L. D., Givskov, M. & Tolker-Nielsen, T. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J. Mol. Biol. 427, 3628–3645 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Favero, M. S., Carson, L. A., Bond, W. W. & Petersen, N. J. Pseudomonas aeruginosa: growth in distilled water from hospitals. Science 173, 836–838 (1971).

    Article  CAS  PubMed  Google Scholar 

  23. Ringen, L. M. & Drake, C. H. A study of the incidence of Pseudomonas aeruginosa from various natural sources. J. Bacteriol. 64, 841–845 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Botzenhart, K. & Döring, G. in Pseudomonas aeruginosa as an Opportunistic Pathogen (eds Campa, M., Bendinelli, M. & Friedman, H.) 1–18 (Springer, 1993).

  25. Qin, S. et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal. Transduct. Target. Ther. 7, 199 (2022). Here, the authors present a comprehensive review of the virulence factors of P. aeruginosa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sikdar, R. & Elias, M. H. Evidence for complex interplay between quorum sensing and antibiotic resistance in Pseudomonas aeruginosa. Microbiol. Spectr. 10, e0126922 (2022).

    Article  PubMed  Google Scholar 

  27. Shrout, J. D. et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62, 1264–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. West, S. A., Winzer, K., Gardner, A. & Diggle, S. P. Quorum sensing and the confusion about diffusion. Trends Microbiol. 20, 586–594 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Whiteley, M., Diggle, S. P. & Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 551, 313–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185, 2080–2095 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Whiteley, M., Lee, K. M. & Greenberg, E. P. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 96, 13904–13909 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066–2079 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Letizia, M. et al. PqsE expands and differentially modulates the RhlR quorum sensing regulon in Pseudomonas aeruginosa. Microbiol. Spectr. 10, e0096122 (2022).

    Article  PubMed  Google Scholar 

  34. Rampioni, G. et al. Unravelling the genome-wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLoS Pathog. 12, e1006029 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schuster, M. & Greenberg, E. P. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Borgert, S. R. et al. Moonlighting chaperone activity of the enzyme PqsE contributes to RhlR-controlled virulence of Pseudomonas aeruginosa. Nat. Commun. 13, 7402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taylor, I. R. et al. Inhibitor mimetic mutations in the Pseudomonas aeruginosa PqsE enzyme reveal a protein–protein interaction with the quorum-sensing receptor RhlR that is vital for virulence factor production. ACS Chem. Biol. 16, 740–752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pearson, J. P., Feldman, M., Iglewski, B. H. & Prince, A. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun. 68, 4331–4334 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rumbaugh, K. P., Griswold, J. A., Iglewski, B. H. & Hamood, A. N. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect. Immun. 67, 5854–5862 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rampioni, G. et al. Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environ. Microbiol. 12, 1659–1673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Latifi, A., Foglino, M., Tanaka, K., Williams, P. & Lazdunski, A. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21, 1137–1146 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. McGrath, S., Wade, D. S. & Pesci, E. C. Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol. Lett. 230, 27–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Wade, D. S. et al. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J. Bacteriol. 187, 4372–4380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McKnight, S. L., Iglewski, B. H. & Pesci, E. C. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182, 2702–2708 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feltner, J. B. et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. mBio 7, e01513–e01516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kostylev, M. et al. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc. Natl Acad. Sci. USA 116, 7027–7032 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cruz, R. L. et al. RhlR-regulated acyl-homoserine lactone quorum sensing in a cystic fibrosis isolate of Pseudomonas aeruginosa. mBio 11, e00532–20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dekimpe, V. & Deziel, E. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 155, 712–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Oshri, R. D., Zrihen, K. S., Shner, I., Omer Bendori, S. & Eldar, A. Selection for increased quorum-sensing cooperation in Pseudomonas aeruginosa through the shut-down of a drug resistance pump. ISME J. 12, 2458–2469 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. O’Loughlin, C. T. et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl Acad. Sci. USA 110, 17981–17986 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. O’Connor, K., Zhao, C. Y., Mei, M. & Diggle, S. P. Frequency of quorum-sensing mutations in Pseudomonas aeruginosa strains isolated from different environments. Microbiology 168, 001265 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Trottier, M. C. et al. The end of the reign of a “master regulator”? A defect in function of the LasR quorum sensing regulator is a common feature of Pseudomonas aeruginosa isolates. mBio 15, e0237623 (2024).

    Article  PubMed  Google Scholar 

  53. Groleau, M. C., Taillefer, H., Vincent, A. T., Constant, P. & Deziel, E. Pseudomonas aeruginosa isolates defective in function of the LasR quorum sensing regulator are frequent in diverse environmental niches. Environ. Microbiol. 24, 1062–1075 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Vanderwoude, J. et al. The evolution of virulence in Pseudomonas aeruginosa during chronic wound infection. Proc. Biol. Sci. 287, 20202272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Azimi, S., Klementiev, A. D., Whiteley, M. & Diggle, S. P. Bacterial quorum sensing during infection. Annu. Rev. Microbiol. 74, 201–219 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007). This study experimentally demonstrates that quorum sensing in P. aeruginosa can be exploited by non-cooperative individuals, with kin selection mitigating this issue.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao, K. et al. Evolution of lasR mutants in polymorphic Pseudomonas aeruginosa populations facilitates chronic infection of the lung. Nat. Commun. 14, 5976 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl Acad. Sci. USA 104, 15876–15881 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rumbaugh, K. P. et al. Quorum sensing and the social evolution of bacterial virulence. Curr. Biol. 19, 341–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. D’Argenio, D. A. et al. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol. Microbiol. 64, 512–533 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hoffman, L. R. et al. Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog. 6, e1000712 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Barth, A. L. & Pitt, T. L. The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. J. Med. Microbiol. 45, 110–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Clay, M. E. et al. Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin. Proc. Natl Acad. Sci. USA 117, 3167–3173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Azimi, S. et al. Allelic polymorphism shapes community function in evolving Pseudomonas aeruginosa populations. ISME J. 14, 1929–1942 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hoffman, L. R. et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J. Cyst. Fibros. 8, 66–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Chugani, S. A. et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 98, 2752–2757 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ding, F. et al. The Pseudomonas aeruginosa orphan quorum sensing signal receptor QscR regulates global quorum sensing gene expression by activating a single linked operon. mBio https://doi.org/10.1128/mBio.01274-18 (2018).

  68. Smith, P. & Schuster, M. Antiactivators prevent self-sensing in Pseudomonas aeruginosa quorum sensing. Proc. Natl Acad. Sci. USA 119, e2201242119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rattray, J. B. et al. Bacterial quorum sensing allows graded and bimodal cellular responses to variations in population density. mBio 13, e0074522 (2022).

    Article  PubMed  Google Scholar 

  70. Mellini, M. et al. RsaL-driven negative regulation promotes heterogeneity in Pseudomonas aeruginosa quorum sensing. mBio 14, e0203923 (2023).

    Article  PubMed  Google Scholar 

  71. Bondi, R. et al. The multi-output incoherent feedforward loop constituted by the transcriptional regulators LasR and RsaL confers robustness to a subset of quorum sensing genes in Pseudomonas aeruginosa. Mol. Biosyst. 13, 1080–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Sindeldecker, D. & Stoodley, P. The many antibiotic resistance and tolerance strategies of Pseudomonas aeruginosa. Biofilm 3, 100056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ciofu, O., Moser, C., Jensen, P. O. & Hoiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 20, 621–635 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Franklin, M. J., Nivens, D. E., Weadge, J. T. & Howell, P. L. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front. Microbiol. 2, 167 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Colvin, K. M. et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 14, 1913–1928 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Martin, D. W. et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl Acad. Sci. USA 90, 8377–8381 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hentzer, M. et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 183, 5395–5401 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Colvin, K. M. et al. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 7, e1001264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Le Mauff, F. et al. The Pel polysaccharide is predominantly composed of a dimeric repeat of alpha-1,4 linked galactosamine and N-acetylgalactosamine. Commun. Biol. 5, 502 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Murakami, K. et al. Role of psl genes in antibiotic tolerance of adherent Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 61, e02587–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jennings, L. K. et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc. Natl Acad. Sci. USA 112, 11353–11358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, S. et al. The exopolysaccharide Psl–eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environ. Microbiol. Rep. 7, 330–340 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Turnbull, L. et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 7, 11220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nazeer, R. R., Wang, M. & Welch, M. More than just a gel: the extracellular matrixome of Pseudomonas aeruginosa. Front. Mol. Biosci. 10, 1307857 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Couto, N., Schooling, S. R., Dutcher, J. R. & Barber, J. Proteome profiles of outer membrane vesicles and extracellular matrix of Pseudomonas aeruginosa biofilms. J. Proteome Res. 14, 4207–4222 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Diggle, S. P. et al. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 8, 1095–1104 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Passos da Silva, D. et al. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat. Commun. 10, 2183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Reichhardt, C. The Pseudomonas aeruginosa biofilm matrix protein CdrA has similarities to other fibrillar adhesin proteins. J. Bacteriol. 205, e0001923 (2023).

    Article  PubMed  Google Scholar 

  91. Ha, D. G. & O’Toole, G. A. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol. Spectr. 3, MB-0003–MB-2014 (2015).

    Article  Google Scholar 

  92. Zheng, X. et al. The surface interface and swimming motility influence surface-sensing responses in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 121, e2411981121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rumbaugh, K. P. & Bjarnsholt, T. Microbial primer: in vivo biofilm. Microbiology 169, 001407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Klausen, M., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol. Microbiol. 50, 61–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Nickel, J. C., Downey, J. A. & Costerton, J. W. Ultrastructural study of microbiologic colonization of urinary catheters. Urology 34, 284–291 (1989).

    Article  CAS  PubMed  Google Scholar 

  97. Costerton, J. W. et al. New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol. Med. Microbiol. 61, 133–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Azimi, S. et al. O-specific antigen-dependent surface hydrophobicity mediates aggregate assembly type in Pseudomonas aeruginosa. mBio 12, e0086021 (2021).

    Article  PubMed  Google Scholar 

  99. Secor, P. R., Michaels, L. A., Bublitz, D. C., Jennings, L. K. & Singh, P. K. The depletion mechanism actuates bacterial aggregation by exopolysaccharides and determines species distribution and composition in bacterial aggregates. Front. Cell Infect. Microbiol. 12, 869736 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Secor, P. R., Michaels, L. A., Ratjen, A., Jennings, L. K. & Singh, P. K. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 115, 10780–10785 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bjarnsholt, T. et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 44, 547–558 (2009).

    Article  PubMed  Google Scholar 

  102. Homøe, P., Bjarnsholt, T., Wessman, M., Sørensen, H. C. & Johansen, H. K. Morphological evidence of biofilm formation in Greenlanders with chronic suppurative otitis media. Eur. Arch. Otorhinolaryngol. 266, 1533–1538 (2009).

    Article  PubMed  Google Scholar 

  103. Kirketerp-Moller, K. et al. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 46, 2717–2722 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kragh, K. N., Tolker-Nielsen, T. & Lichtenberg, M. The non-attached biofilm aggregate. Commun. Biol. 6, 898 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kolpen, M. et al. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax 77, 1015–1022 (2022).

    Article  PubMed  Google Scholar 

  106. Jennings, L. K. et al. Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likely impede current therapies. Cell Rep. 34, 108782 (2021). This study demonstrates that the morphology of P. aeruginosa biofilm aggregate in cystic fibrosis sputum is consistent with a polysaccharide-dependent aggregation mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rossy, T. et al. Pseudomonas aeruginosa type IV pili actively induce mucus contraction to form biofilms in tissue-engineered human airways. PLoS Biol. 21, e3002209 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rumbaugh, K. P. & Whiteley, M. Towards improved biofilm models. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-024-01086-2 (2024).

  109. Liao, C., Huang, X., Wang, Q., Yao, D. & Lu, W. Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Front. Cell Infect. Microbiol. 12, 926758 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hauser, A. R. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat. Rev. Microbiol. 7, 654–665 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yahr, T. L., Goranson, J. & Frank, D. W. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol. Microbiol. 22, 991–1003 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, P. V. The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. 3. Identity of the lethal toxins produced in vitro and in vivo. J. Infect. Dis. 116, 481–489 (1966).

    Article  CAS  PubMed  Google Scholar 

  113. Michalska, M. & Wolf, P. Pseudomonas exotoxin A: optimized by evolution for effective killing. Front. Microbiol. 6, 963 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Armstrong, S., Yates, S. P. & Merrill, A. R. Insight into the catalytic mechanism of Pseudomonas aeruginosa exotoxin A. Studies of toxin interaction with eukaryotic elongation factor-2. J. Biol. Chem. 277, 46669–46675 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Jorgensen, R. et al. Exotoxin A–eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature 436, 979–984 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Ochsner, U. A., Johnson, Z., Lamont, I. L., Cunliffe, H. E. & Vasil, M. L. Exotoxin A production in Pseudomonas aeruginosa requires the iron-regulated pvdS gene encoding an alternative sigma factor. Mol. Microbiol. 21, 1019–1028 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Farajnia, S. et al. Protective efficacy of recombinant exotoxin A-flagellin fusion protein against Pseudomonas aeruginosa infection. Can. J. Microbiol. 61, 60–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Galdino, A. C. M., Branquinha, M. H., Santos, A. L. S. & Viganor, L. in Pathophysiological Aspects of Proteases (eds Chakraborti, S. & Dhalla, N. S.) 381–397 (Springer, 2017).

  119. Soberon-Chavez, G., Lepine, F. & Deziel, E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68, 718–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Hall, S. et al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 8, 236 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Allen, L. et al. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J. Immunol. 174, 3643–3649 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Gallagher, L. A. & Manoil, C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol. 183, 6207–6214 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zuhra, K. & Szabo, C. The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. FEBS J. 289, 2481–2515 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Cornelis, P. & Dingemans, J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell Infect. Microbiol. 3, 75 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lamont, I. L., Beare, P. A., Ochsner, U., Vasil, A. I. & Vasil, M. L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 99, 7072–7077 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Janet-Maitre, M. et al. Genome-wide screen in human plasma identifies multifaceted complement evasion of Pseudomonas aeruginosa. PLoS Pathog. 19, e1011023 (2023). This genome-wide screen in human plasma identifies novel factors that contribute to P. aeruginosa’s multifaceted evasion of complement-mediated killing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Turner, K. H., Wessel, A. K., Palmer, G. C., Murray, J. L. & Whiteley, M. Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc. Natl Acad. Sci. USA 112, 4110–4115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vincent, J. L. et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 323, 1478–1487 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pham, T. M. et al. Routes of transmission of VIM-positive Pseudomonas aeruginosa in the adult intensive care unit — analysis of 9 years of surveillance at a university hospital using a mathematical model. Antimicrob. Resist. Infect. Control 11, 55 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Garvey, M. I., Bradley, C. W., Tracey, J. & Oppenheim, B. Continued transmission of Pseudomonas aeruginosa from a wash hand basin tap in a critical care unit. J. Hosp. Infect. 94, 8–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Costa, D. et al. Nosocomial outbreak of Pseudomonas aeruginosa associated with a drinking water fountain. J. Hosp. Infect. 91, 271–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Jones, A. M. et al. Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet 358, 557–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Milczewska, J. et al. Clinical outcomes for cystic fibrosis patients with Pseudomonas aeruginosa cross-infections. Pediatr. Pulmonol. 55, 161–168 (2020).

    Article  PubMed  Google Scholar 

  134. Doring, G. et al. Generation of Pseudomonas aeruginosa aerosols during handwashing from contaminated sink drains, transmission to hands of hospital personnel, and its prevention by use of a new heating device. Zentralbl. Hyg. Umweltmed. 191, 494–505 (1991).

    CAS  PubMed  Google Scholar 

  135. Saitou, K., Furuhata, K., Kawakami, Y. & Fukuyama, M. Biofilm formation abilities and disinfectant-resistance of Pseudomonas aeruginosa isolated from cockroaches captured in hospitals. Biocontrol Sci. 14, 65–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Okuda, J. et al. Translocation of Pseudomonas aeruginosa from the intestinal tract is mediated by the binding of ExoS to an Na,K-ATPase regulator, FXYD3. Infect. Immun. 78, 4511–4522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pirnay, J. P. et al. Pseudomonas aeruginosa population structure revisited. PLoS ONE 4, e7740 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Curran, B., Jonas, D., Grundmann, H., Pitt, T. & Dowson, C. G. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J. Clin. Microbiol. 42, 5644–5649 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Botelho, J., Grosso, F. & Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa — mechanisms, epidemiology and evolution. Drug Resist. Updat. 44, 100640 (2019).

    Article  PubMed  Google Scholar 

  140. Oliver, A., Mulet, X., Lopez-Causape, C. & Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updat. 21-22, 41–59 (2015).

    Article  PubMed  Google Scholar 

  141. Winstanley, C. et al. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res. 19, 12–23 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee, C. et al. Why? — Successful Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiol. Rev. 44, 740–762 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fischer, S., Dethlefsen, S., Klockgether, J. & Tummler, B. Phenotypic and genomic comparison of the two most common ExoU-positive Pseudomonas aeruginosa clones, PA14 and ST235. mSystems 5, e01007–e01020 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Treepong, P. et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin. Microbiol. Infect. 24, 258–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Del Barrio-Tofino, E., Lopez-Causape, C. & Oliver, A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents 56, 106196 (2020).

    Article  PubMed  Google Scholar 

  146. Viedma, E. et al. VIM-2-producing multidrug-resistant Pseudomonas aeruginosa ST175 clone, Spain. Emerg. Infect. Dis. 18, 1235–1241 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Breidenstein, E. B., de la Fuente-Nunez, C. & Hancock, R. E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 19, 419–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Shepherd, M. J. et al. Ecological and evolutionary mechanisms driving within-patient emergence of antimicrobial resistance. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-024-01041-1 (2024).

  149. Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F. & Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 23, 15779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Diaz Caballero, J. et al. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat. Commun. 14, 4083 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Williams, D. et al. Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am. J. Respir. Crit. Care Med. 191, 775–785 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wheatley, R. et al. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nat. Commun. 12, 2460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Meirelles, L. A. et al. Pseudomonas aeruginosa faces a fitness trade-off between mucosal colonization and antibiotic tolerance during airway infection. Nat. Microbiol. 9, 3284–3303 (2024).

    Article  CAS  PubMed  Google Scholar 

  154. Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Microbiol. 17, 479–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Ikonomidis, A. et al. Efflux system overexpression and decreased OprD contribute to the carbapenem heterogeneity in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 279, 36–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Mei, S., Gao, Y., Zhu, C., Dong, C. & Chen, Y. Research of the heteroresistance of Pseudomonas aeruginosa to imipenem. Int. J. Clin. Exp. Med. 8, 6129–6132 (2015).

    PubMed  PubMed Central  Google Scholar 

  157. Xu, Y. et al. Mechanisms of heteroresistance and resistance to imipenem in Pseudomonas aeruginosa. Infect. Drug Resist. 13, 1419–1428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Li, W. R. et al. Pseudomonas aeruginosa heteroresistance to levofloxacin caused by upregulated expression of essential genes for DNA replication and repair. Front. Microbiol. 13, 1105921 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Brauncajs, M., Bielec, F., Macieja, A. & Pastuszak-Lewandoska, D. Cefiderocol — an effective antimicrobial for MDR infections but a challenge for routine antimicrobial susceptibility testing. Adv. Med. Sci. 69, 256–263 (2024).

    Article  CAS  PubMed  Google Scholar 

  160. Hahn, A. et al. Bacteriophage therapy for pan-drug-resistant Pseudomonas aeruginosa in two persons with cystic fibrosis. J. Investig. Med. High Impact Case Rep. 11, 23247096231188243 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).

    Article  PubMed  Google Scholar 

  162. Rumbaugh, K. P. & Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 18, 571–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rezzoagli, C., Archetti, M., Mignot, I., Baumgartner, M. & Kummerli, R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol. 18, e3000805 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Allen, R. C., Popat, R., Diggle, S. P. & Brown, S. P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12, 300–308 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Mei, M., Estrada, I., Diggle, S. P. & Goldberg, J. B. R-pyocins as targeted antimicrobials against Pseudomonas aeruginosa. npj Antimicrob. Resist. 3, 17 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Lee, D. G. et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol. 7, R90 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Freschi, L. et al. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol. Evol. 11, 109–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Rudra, B., Duncan, L., Shah, A. J., Shah, H. N. & Gupta, R. S. Phylogenomic and comparative genomic studies robustly demarcate two distinct clades of Pseudomonas aeruginosa strains: proposal to transfer the strains from an outlier clade to a novel species Pseudomonas paraeruginosa sp. nov. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijsem.0.005542 (2022).

  169. Abram, K. Z., Jun, S. R. & Udaondo, Z. Pseudomonas aeruginosa pangenome: core and accessory genes of a highly resourceful opportunistic pathogen. Adv. Exp. Med. Biol. 1386, 3–28 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Kung, V. L., Ozer, E. A. & Hauser, A. R. The accessory genome of Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 74, 621–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Darch, S. E. et al. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci. Rep. 5, 7649 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jorth, P. et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 18, 307–319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Vanderwoude, J., Azimi, S., Read, T. D. & Diggle, S. P. The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of Pseudomonas aeruginosa populations in cystic fibrosis lung infection. mBio 15, e0310923 (2024).

    Article  PubMed  Google Scholar 

  174. Whiteley, M. et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  175. Palmer, K. L., Aye, L. M. & Whiteley, M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J. Bacteriol. 189, 8079–8087 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Arai, H. Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front. Microbiol. 2, 103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Palmer, G. C. & Whiteley, M. Metabolism and pathogenicity of Pseudomonas aeruginosa infections in the lungs of individuals with cystic fibrosis. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MBP-0003-2014 (2015).

  178. Sauvage, S. et al. Impact of carbon source supplementations on Pseudomonas aeruginosa physiology. J. Proteome Res. 21, 1392–1407 (2022).

    Article  CAS  PubMed  Google Scholar 

  179. Cox, C. D. & Parker, J. Use of 2-aminoacetophenone production in identification of Pseudomonas aeruginosa. J. Clin. Microbiol. 9, 479–484 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dunphy, L. J. et al. Multidimensional clinical surveillance of Pseudomonas aeruginosa reveals complex relationships between isolate source, morphology, and antimicrobial resistance. mSphere 6, e0039321 (2021).

    Article  PubMed  Google Scholar 

  181. da Cruz Nizer, W. S. et al. Oxidative stress response in Pseudomonas aeruginosa. Pathogens 10, 1187 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Neves, P. R., McCulloch, J. A., Mamizuka, E. M. & Lincopan, N. in Encyclopedia of Food Microbiology 2nd edn (eds Batt, C. A. & Tortorello, M. L.) 253–260 (Academic Press, 2014).

  183. Visca, P., Imperi, F. & Lamont, I. L. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 15, 22–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Lau, G. W., Hassett, D. J., Ran, H. & Kong, F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10, 599–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Ogunnariwo, J. & Hamilton-Miller, J. M. Brown- and red-pigmented Pseudomonas aeruginosa: differentiation between melanin and pyorubrin. J. Med. Microbiol. 8, 199–203 (1975).

    Article  CAS  PubMed  Google Scholar 

  186. Michel-Briand, Y. & Baysse, C. The pyocins of Pseudomonas aeruginosa. Biochimie 84, 499–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  187. Besse, A., Groleau, M. C. & Deziel, E. Emergence of small colony variants is an adaptive strategy used by Pseudomonas aeruginosa to mitigate the effects of redox imbalance. mSphere 8, e0005723 (2023).

    Article  PubMed  Google Scholar 

  188. Dietrich, L. E. et al. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J. Bacteriol. 195, 1371–1380 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Giallonardi, G. et al. Alkyl-quinolone-dependent quorum sensing controls prophage-mediated autolysis in Pseudomonas aeruginosa colony biofilms. Front. Cell Infect. Microbiol. 13, 1183681 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rashid, M. H. & Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 97, 4885–4890 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Craig, L., Forest, K. T. & Maier, B. Type IV pili: dynamics, biophysics and functional consequences. Nat. Rev. Microbiol. 17, 429–440 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Holloway, B. W. Genetic recombination in Pseudomonas aeruginosa. J. Gen. Microbiol. 13, 572–581 (1955).

    CAS  PubMed  Google Scholar 

  193. Rahme, L. G. et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902 (1995).

    Article  CAS  PubMed  Google Scholar 

  194. Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Cornforth, D. M., Diggle, F. L., Melvin, J. A., Bomberger, J. M. & Whiteley, M. Quantitative framework for model evaluation in microbiology research using Pseudomonas aeruginosa and cystic fibrosis infection as a test case. mBio 11, e03042–19 (2020). In this study, the authors provide a framework for quantifying the accuracy of preclinical models relative to human infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lewin, G. R. et al. Application of a quantitative framework to improve the accuracy of a bacterial infection model. Proc. Natl Acad. Sci. USA 120, e2221542120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Guan, J. et al. Bacteriophage genome engineering with CRISPR–Cas13a. Nat. Microbiol. 7, 1956–1966 (2022). This study develops a genetic editing tool using RNA-targeting CRISPR–Cas13a and P. aeruginosa to manipulate jumbo phages, overcoming challenges posed by their protective phage nucleus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Lewin, G. R., Stocke, K. S., Lamont, R. J. & Whiteley, M. A quantitative framework reveals traditional laboratory growth is a highly accurate model of human oral infection. Proc. Natl Acad. Sci. USA 119, e2116637119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Duncan, R. P. et al. Improvement of a mouse infection model to capture Pseudomonas aeruginosa chronic physiology in cystic fibrosis. Proc. Natl Acad. Sci. USA 121, e2406234121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194–197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Cystic Fibrosis foundation for grants (WHITEL20A0 and WHITEL22G0) to M.W. and a postdoctoral fellowship to M.L. (LETIZI24G0-BASBAUM); the National Institutes of Health (NIH) and the National Institute of Allergy and Infectious Diseases (NIAID) for funding to S.P.D. (R01AI153116 and R56AI184449) and M.W. (R01AI189786).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Marvin Whiteley.

Ethics declarations

Competing interests

M.W. is the co-founder and CSO of SynthBiome, Inc. M.L. and S.P.D. declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Niels Hoiby, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bet hedging

Stochastic switching between phenotypic states to enhance population long-term fitness in fluctuating environmental conditions.

Biogeography

The spatial assembly and distribution of various organisms in an environment through time.

Bridging aggregation

A mechanism of bacterial aggregation driven by electrostatic interactions between bacterial cell surfaces and polymers present in the environment.

Depletion aggregation

A process in which the reduction of free energy through increased entropy of the whole system induces the stacked aggregation of bacterial cells in polymer-rich environments.

Division of labour

Cooperating individuals specialize in carrying out specific tasks, providing an inclusive fitness benefit to all individuals involved.

Self-sensing

Cell-autonomous and density-independent reception of signals produced by the same cell.

Sociomicrobiology

Studies on the group behaviours of microorganisms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letizia, M., Diggle, S.P. & Whiteley, M. Pseudomonas aeruginosa: ecology, evolution, pathogenesis and antimicrobial susceptibility. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-025-01193-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-025-01193-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing