Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chronic kidney disease and dementia: an epidemiological perspective

Abstract

Ageing populations worldwide face increasing challenges of multimorbidity (that is, the co-occurrence of two or more chronic conditions). The combination of chronic kidney disease (CKD) and dementia occurs more frequently than it would by simple coincidence, owing to several underlying biological and clinical mechanisms. Population-based cohort studies are an important epidemiological tool and have contributed to improved understanding of these mechanisms. These mechanisms include uniquely shared haemodynamic features of vasculature, overlapping risk factor profiles, and direct neurotoxic effects of accumulating waste products due to poor kidney function. The effect of these pathways is suggested to differ across gender, relevant demographic subgroups, and populations from low- to middle-income countries. Yet, given their study design, population-based cohort studies also inherently face several methodological challenges. These challenges pertain to the use of biomarkers that do not always fully capture the structure and function of the kidney or the brain; bidirectionality across the pathways under study; and practical issues of proper causal inference in light of incomplete distinction between confounders, mediators and effect modifiers. This Review describes our current understanding of the link between CKD and dementia, with a focus on knowledge synthesized from population-based cohort studies. Methodological challenges and possible solutions will be described and directions for future research areas will be outlined.

Key points

  • Chronic kidney disease (CKD) and dementia are frequently co-occurring conditions that pose a large burden on societies worldwide; both conditions have a long subclinical phase that is captured through various biomarkers.

  • Various mechanisms link CKD with dementia, pointing towards possible targets for prevention, but methodological challenges exist.

  • A concerted effort involving caregivers, methodologists, patients and policymakers is required to tackle the clinical and methodological challenges posed by CKD and dementia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of various pathways and mechanisms linking chronic kidney disease to cognitive impairment.
Fig. 2: Causal diagrams depicting various scenarios involving biomarkers of chronic kidney disease.

Similar content being viewed by others

References

  1. Diseases, G. B. D. & Injuries, C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  2. Chi, H. C. et al. Adult renal dysfunction and risk of dementia or cognitive decline: brain-kidney axis hypothesis based on a systematic review and meta-analysis. J. Prev. Alzheimers Dis. 10, 443–452 (2023).

    Article  PubMed  Google Scholar 

  3. Licher, S. et al. Lifetime risk and multimorbidity of non-communicable diseases and disease-free life expectancy in the general population: a population-based cohort study. PLoS Med. 16, e1002741 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jadoul, M., Aoun, M. & Masimango Imani, M. The major global burden of chronic kidney disease. Lancet Glob. Health 12, e342–e343 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Kidney Disease: Improving Global Outcomes, CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 105, S117–S314 (2024).

    Article  Google Scholar 

  6. GBD 2021 Nervous System Disorders Collaborators. Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the global burden of disease study 2021. Lancet Neurol. 23, 344–381 (2024).

    Article  Google Scholar 

  7. Jack, C. R. Jr. et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s association workgroup. Alzheimers Dement. 20, 5143–5169 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petersen, R. C. et al. A new framework for dementia nomenclature. JAMA Neurol. 80, 1364–1370 (2023).

    Article  PubMed  Google Scholar 

  9. Dubois, B. et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the international working group. Lancet Neurol. 20, 484–496 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farrell, D. R. & Vassalotti, J. A. Screening, identifying, and treating chronic kidney disease: why, who, when, how, and what? BMC Nephrol. 25, 34 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Andrassy, K. M. Comments on ‘KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease’. Kidney Int. 84, 622–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Vaidya, S. R., Aeddula, N. R. & Doerr, C. Chronic kidney disease (nursing). In StatPearls https://www.ncbi.nlm.nih.gov/books/NBK568778/ (2024).

  13. Bello, A. K. et al. An update on the global disparities in kidney disease burden and care across world countries and regions. Lancet Glob. Health 12, e382–e395 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. Lancet Public. Health 7, e105–e125 (2022).

    Article  Google Scholar 

  15. Livingston, G. et al. Dementia prevention, intervention, and care: 2024 report of the lancet standing commission. Lancet 404, 572–628 (2024).

    Article  PubMed  Google Scholar 

  16. Wolters, F. J. et al. Twenty-seven-year time trends in dementia incidence in Europe and the United States: the Alzheimer cohorts consortium. Neurology 95, e519–e531 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Andersson, C., Johnson, A. D., Benjamin, E. J., Levy, D. & Vasan, R. S. 70-year legacy of the Framingham Heart Study. Nat. Rev. Cardiol. 16, 687–698 (2019).

    Article  PubMed  Google Scholar 

  18. Mittelmark, M. B. et al. Prevalence of cardiovascular diseases among older adults. Cardiovascular health study. Am. J. Epidemiol. 137, 311–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Ikram, M. A. et al. The Rotterdam study. Design update and major findings between 2020 and 2024. Eur. J. Epidemiol. 39, 183–206 (2024).

    Article  PubMed  Google Scholar 

  20. The Atherosclerosis Risk In Communities (ARIC) study: design and objectives. The ARIC investigators. Am J Epidemiol 129, 687–702 (1989).

    Google Scholar 

  21. Bild, D. E. et al. Multi-ethnic study of atherosclerosis: objectives and design. Am. J. Epidemiol. 156, 871–881 (2002).

    Article  PubMed  Google Scholar 

  22. Batty, G. D., Gale, C. R., Kivimäki, M., Deary, I. J. & Bell, S. Comparison of risk factor associations in UK biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. BMJ 368, m131 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  24. Peters, A. et al. Framework and baseline examination of the German national cohort (NAKO). Eur. J. Epidemiol. 37, 1107–1124 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stefanou, E., Tountas, C., Ioannidis, E. & Kole, C. Biomarkers in cardiorenal syndrome, a potential use in precision medicine. J. Nephrol. 37, 2127–2138 (2024).

    Article  PubMed  Google Scholar 

  26. Provenzano, M. et al. Estimated glomerular filtration rate in observational and interventional studies in chronic kidney disease. J. Nephrol. 37, 573–586 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Inker, L. A. et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N. Engl. J. Med. 385, 1737–1749 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watanabe, K., Watanabe, T. & Nakayama, M. Cerebro-renal interactions: impact of uremic toxins on cognitive function. Neurotoxicology 44, 184–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Zheng, Y., Ji, B., Chen, S., Zhou, R. & Ni, R. The impact of uremic toxins on Alzheimer’s disease. Curr. Alzheimer Res. 19, 104–118 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Greenberg, J. H. et al. Urine biomarkers of kidney tubule health, injury, and inflammation are associated with progression of CKD in children. J. Am. Soc. Nephrol. 32, 2664–2677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao, K., Seeliger, E., Niendorf, T. & Liu, Z. Noninvasive assessment of diabetic kidney disease with MRI: hype or hope? J. Magn. Reson. Imaging 59, 1494–1513 (2024).

    Article  PubMed  Google Scholar 

  32. Singla, R. K., Kadatz, M., Rohling, R. & Nguan, C. Kidney ultrasound for nephrologists: a review. Kidney Med. 4, 100464 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Darweesh, S. K. L. et al. Quantitative gait, cognitive decline, and incident dementia: the Rotterdam study. Alzheimers Dement. 15, 1264–1273 (2019).

    Article  PubMed  Google Scholar 

  35. Wolters, F. J. et al. Orthostatic hypotension and the long-term risk of dementia: a population-based study. PLoS Med. 13, e1002143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mooldijk, S. S. & Ikram, M. A. Cerebral small vessel disease in population-based research: what are we looking at — and what not? Aging Dis. 15, 1438–1446 (2024).

    PubMed  PubMed Central  Google Scholar 

  37. Jack, C. R. Jr Advances in Alzheimer’s disease research over the past two decades. Lancet Neurol. 21, 866–869 (2022).

    Article  PubMed  Google Scholar 

  38. Hainsworth, A. H., Markus, H. S. & Schneider, J. A. Cerebral small vessel disease, hypertension, and vascular contributions to cognitive impairment and dementia. Hypertension 81, 75–86 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Tang, X. et al. Association of kidney function and brain health: a systematic review and meta-analysis of cohort studies. Ageing Res. Rev. 82, 101762 (2022).

    Article  PubMed  Google Scholar 

  40. Mund, M. & Nestler, S. Beyond the cross-lagged panel model: next-generation statistical tools for analyzing interdependencies across the life course. Adv. Life Course Res. 41, 100249 (2019).

    Article  PubMed  Google Scholar 

  41. Xie, Z., Tong, S., Chu, X., Feng, T. & Geng, M. Chronic kidney disease and cognitive impairment: the kidney-brain axis. Kidney Dis. 8, 275–285 (2022).

    Article  Google Scholar 

  42. Kelly, D. M. & Rothwell, P. M. Disentangling the relationship between chronic kidney disease and cognitive disorders. Front. Neurol. 13, 830064 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bossola, M. & Picconi, B. Uremic toxins and the brain in chronic kidney disease. J. Nephrol. 37, 1391–1395 (2024).

    Article  PubMed  Google Scholar 

  44. Lu, R., Kiernan, M. C., Murray, A., Rosner, M. H. & Ronco, C. Kidney-brain crosstalk in the acute and chronic setting. Nat. Rev. Nephrol. 11, 707–719 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Seliger, S. L., Wendell, C. R., Waldstein, S. R., Ferrucci, L. & Zonderman, A. B. Renal function and long-term decline in cognitive function: the Baltimore Longitudinal Study of Aging. Am. J. Nephrol. 41, 305–312 (2015).

    Article  PubMed  Google Scholar 

  46. Lee, S. et al. The association between kidney function and cognitive decline in community-dwelling, elderly Japanese people. J. Am. Med. Dir. Assoc. 16, 349.e1–5 (2015).

    Article  PubMed  Google Scholar 

  47. Berger, I. et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 14, 206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bugnicourt, J. M., Godefroy, O., Chillon, J. M., Choukroun, G. & Massy, Z. A. Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. J. Am. Soc. Nephrol. 24, 353–363 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Kelly, D. M., et al. Impaired kidney function, cerebral small vessel disease and cognitive disorders: the Framingham Heart Study. Nephrol. Dial. Transplant. 39, 1911–1922 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sedaghat, S. et al. The AGES-Reykjavik study suggests that change in kidney measures is associated with subclinical brain pathology in older community-dwelling persons. Kidney Int. 94, 608–615 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sedaghat, S. et al. Kidney function and microstructural integrity of brain white matter. Neurology 85, 154–161 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Scheppach, J. B. et al. Association of kidney function measures with signs of neurodegeneration and small vessel disease on brain magnetic resonance imaging: the Atherosclerosis Risk In Communities (ARIC) study. Am. J. Kidney Dis. 81, 261–269.e1 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Akoudad, S. et al. Kidney function and cerebral small vessel disease in the general population. Int. J. Stroke 10, 603–608 (2015).

    Article  PubMed  Google Scholar 

  54. Sedaghat, S. et al. Kidney function and cerebral blood flow: the Rotterdam study. J. Am. Soc. Nephrol. 27, 715–721 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Seliger, S. L. et al. Cystatin C and subclinical brain infarction. J. Am. Soc. Nephrol. 16, 3721–3727 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Farrah, T. E., Dhillon, B., Keane, P. A., Webb, D. J. & Dhaun, N. The eye, the kidney, and cardiovascular disease: old concepts, better tools, and new horizons. Kidney Int. 98, 323–342 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Toyoda, K. Cerebral small vessel disease and chronic kidney disease. J. Stroke 17, 31–37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yan, Q. et al. Kidney–brain axis in the pathogenesis of cognitive impairment. Neurobiol. Dis. 200, 106626 (2024).

    Article  CAS  PubMed  Google Scholar 

  59. Viggiano, D. et al. Mechanisms of cognitive dysfunction in CKD. Nat. Rev. Nephrol. 16, 452–469 (2020).

    Article  PubMed  Google Scholar 

  60. Viggiano, D. et al. Mild cognitive impairment and kidney disease: clinical aspects. Nephrol. Dial. Transpl. 35, 10–17 (2020).

    CAS  Google Scholar 

  61. Kang, D. H. et al. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol. 13, 806–816 (2002).

    Article  PubMed  Google Scholar 

  62. O’Rourke, M. F. & Safar, M. E. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 46, 200–204 (2005).

    Article  PubMed  Google Scholar 

  63. Kurella Tamura, M. et al. Kidney disease, intensive hypertension treatment, and risk for dementia and mild cognitive impairment: the systolic blood pressure intervention trial. J. Am. Soc. Nephrol. 31, 2122–2132 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Babroudi, S. et al. Blood pressure, incident cognitive impairment, and severity of CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Am. J. Kidney Dis. 82, 443–453.e1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kim, E. D. et al. Associations between kidney disease measures and regional pulse wave velocity in a large community-based cohort: the Atherosclerosis Risk In Communities (ARIC) study. Am. J. Kidney Dis. 72, 682–690 (2018).

    Article  PubMed  Google Scholar 

  66. Zierler, R. E. et al. Carotid and lower extremity arterial disease in patients with renal artery atherosclerosis. Arch. Intern. Med. 158, 761–767 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Miralles, M. et al. Screening for carotid and renal artery stenoses in patients with aortoiliac disease. Ann. Vasc. Surg. 12, 17–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Wong, T. Y. et al. Retinal microvascular abnormalities and renal dysfunction: the Atherosclerosis Risk In Communities study. J. Am. Soc. Nephrol. 15, 2469–2476 (2004).

    Article  PubMed  Google Scholar 

  69. Fernando, M. S. et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 37, 1391–1398 (2006).

    Article  PubMed  Google Scholar 

  70. Theuerle, J. D. et al. Retinal microvascular function predicts chronic kidney disease in patients with cardiovascular risk factors. Atherosclerosis 341, 63–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Qureshi, A. I. & Caplan, L. R. Intracranial atherosclerosis. Lancet 383, 984–998 (2014).

    Article  PubMed  Google Scholar 

  72. Sacco, R. L., Kargman, D. E., Gu, Q. & Zamanillo, M. C. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study. Stroke 26, 14–20 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Wong, L. K. Global burden of intracranial atherosclerosis. Int. J. Stroke 1, 158–159 (2006).

    Article  PubMed  Google Scholar 

  74. Gorelick, P. B., Wong, K. S., Bae, H. J. & Pandey, D. K. Large artery intracranial occlusive disease: a large worldwide burden but a relatively neglected frontier. Stroke 39, 2396–2399 (2008).

    Article  PubMed  Google Scholar 

  75. Gorelick, P. B. et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42, 2672–2713 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pajewski, N. M. et al. The legacy effect of intensive versus standard BP control on the incidence of needing dialysis or kidney transplantation. J. Am. Soc. Nephrol. 35, 1737–1745 (2024).

    Article  PubMed  Google Scholar 

  77. Syrjanen, J. A. et al. Associations of amyloid and neurodegeneration plasma biomarkers with comorbidities. Alzheimers Dement. 18, 1128–1140 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Sedaghat, S. et al. The association of kidney function with plasma amyloid-β levels and brain amyloid deposition. J. Alzheimers Dis. 92, 229–239 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sarto, J. et al. Impact of demographics and comorbid conditions on plasma biomarkers concentrations and their diagnostic accuracy in a memory clinic cohort. J. Neurol. 271, 1973–1984 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Dittrich, A. et al. Association of chronic kidney disease with plasma NfL and other biomarkers of neurodegeneration: the H70 Birth Cohort Study in Gothenburg. Neurology 101, e277–e288 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, J. et al. The impact of kidney function on plasma neurofilament light and phospho-tau 181 in a community-based cohort: the Shanghai Aging Study. Alzheimers Res. Ther. 16, 32 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Adesso, S. et al. Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: interaction between astrocytes and microglia. Front. Pharmacol. 8, 370 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lipton, S. A. et al. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA 94, 5923–5928 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  85. Stefan, N. & Schulze, M. B. Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment. Lancet Diabetes Endocrinol. 11, 426–440 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Nilsson, P. M., Tuomilehto, J. & Rydén, L. The metabolic syndrome — what is it and how should it be managed? Eur. J. Prev. Cardiol. 26, 33–46 (2019).

    Article  PubMed  Google Scholar 

  87. Alberti, K. G. & Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Kjaergaard, A. D. et al. Kidney function and risk of dementia: observational study, meta-analysis, and two-sample mendelian randomization study. Eur. J. Epidemiol. 37, 1273–1284 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, H., Yuan, H. & Wang, E. Causal effects of kidney function and chronic kidney disease on Alzheimer’s disease by analyzing large-scale genome-wide association study datasets. J. Alzheimers Dis. 102, 321–328 (2024).

    Article  PubMed  Google Scholar 

  90. Marini, S. et al. Genetic overlap and causal inferences between kidney function and cerebrovascular disease. Neurology 94, e2581–e2591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pohl, D. J. et al. Relationship between residential segregation, later-life cognition, and incident dementia across race/ethnicity. Int. J. Env. Res. Public. Health 18, 11233 (2021).

    Article  Google Scholar 

  92. Lee, H., Caldwell, J. T., Maene, C., Cagney, K. A. & Saunders, M. R. Racial/ethnic inequities in access to high-quality dialysis treatment in Chicago: does neighborhood racial/ethnic composition matter? J. Racial Ethn. Health Disparities 7, 854–864 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Park, S. et al. Association between visit-to-visit blood pressure variability and risks of dementia in CKD patients: a nationwide observational cohort study. Clin. Kidney J. 15, 1506–1513 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Drew, D. A. et al. Blood pressure and cognitive decline in prevalent hemodialysis patients. Am. J. Nephrol. 49, 460–469 (2019).

    Article  PubMed  Google Scholar 

  95. Olczyk, P., Kusztal, M., Gołębiowski, T., Letachowicz, K. & Krajewska, M. Cognitive impairment in end stage renal disease patients undergoing hemodialysis: markers and risk factors. Int. J. Env. Res. Public. Health 19, 2389 (2022).

    Article  CAS  Google Scholar 

  96. Yang, S. et al. Association between cognitive function and risk of chronic kidney disease: a longitudinal cohort and mendelian randomization study. Mayo Clin. Proc. 99, 1399–1410 (2024).

    Article  PubMed  Google Scholar 

  97. Hayat, S. A. et al. Understanding the relationship between cognition and death: a within cohort examination of cognitive measures and mortality. Eur. J. Epidemiol. 33, 1049–1062 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tanaka, S. & Okusa, M. D. Crosstalk between the nervous system and the kidney. Kidney Int. 97, 466–476 (2020).

    Article  PubMed  Google Scholar 

  99. Tanaka, S. et al. Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc. Natl Acad. Sci. USA 118, e2021758118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mooldijk, S. S., Labrecque, J. A., Ikram, M. A. & Ikram, M. K. Ratios in regression analyses with causal questions. Am J Epidemiol 194, 311–313 (2025).

    Article  PubMed  Google Scholar 

  101. Brookhart, M. A. et al. Variable selection for propensity score models. Am. J. Epidemiol. 163, 1149–1156 (2006).

    Article  PubMed  Google Scholar 

  102. Knottnerus, J. A. & Tugwell, P. Confounding obscures our view, effect modification is part of reality. J. Clin. Epidemiol. 114, v–vi (2019).

    Article  PubMed  Google Scholar 

  103. Knol, M. J. & VanderWeele, T. J. Recommendations for presenting analyses of effect modification and interaction. Int. J. Epidemiol. 41, 514–520 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. VanderWeele, T. J. A unification of mediation and interaction: a 4-way decomposition. Epidemiology 25, 749–761 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ikram, M. A. & VanderWeele, T. J. A proposed clinical and biological interpretation of mediated interaction. Eur. J. Epidemiol. 30, 1115–1118 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bos, D. et al. Thyroid function and atrial fibrillation: is there a mediating role for epicardial adipose tissue? Clin. Epidemiol. 10, 225–234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ma, Y. et al. APOE ε4 and late-life cognition: mediation by structural brain imaging markers. Eur. J. Epidemiol. 37, 591–601 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Berry, D. & Willoughby, M. T. On the practical interpretability of cross-lagged panel models: rethinking a developmental workhorse. Child. Dev. 88, 1186–1206 (2017).

    Article  PubMed  Google Scholar 

  109. Hamaker, E. L., Kuiper, R. M. & Grasman, R. P. A critique of the cross-lagged panel model. Psychol. Methods 20, 102–116 (2015).

    Article  PubMed  Google Scholar 

  110. Murray, A. M. & Vemuri, P. Kidney disease and brain health: current knowledge and next steps. Am. J. Kidney Dis. 81, 253–255 (2023).

    Article  PubMed  Google Scholar 

  111. Mc Causland, F. R. et al. Finerenone and kidney outcomes in patients with heart failure: the FINEARTS-HF trial. J. Am. Coll. Cardiol. 85, 159–168 (2025).

    Article  Google Scholar 

  112. Zheng, S. L. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: a systematic review and meta-analysis. JAMA 319, 1580–1591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sohn, M., Dietrich, J. W., Nauck, M. A. & Lim, S. Characteristics predicting the efficacy of SGLT-2 inhibitors versus GLP-1 receptor agonists on major adverse cardiovascular events in type 2 diabetes mellitus: a meta-analysis study. Cardiovasc. Diabetol. 22, 153 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sheets, K. M., Davey, C. S., St Peter, W. L., Reule, S. A. & Murray, A. M. Cognitive impairment, perceived medication adherence, and high-risk medication use in patients with reduced kidney function: a cross-sectional analysis. Health Sci. Rep. 5, e697 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Copur, S., Berkkan, M., Sarafidis, P. & Kanbay, M. Intensive blood pressure control on dementia in patients with chronic kidney disease: potential reduction in disease burden. Eur. J. Intern. Med. 101, 8–13 (2022).

    Article  PubMed  Google Scholar 

  116. van Buchem, M. A. et al. The heart–brain connection: a multidisciplinary approach targeting a missing link in the pathophysiology of vascular cognitive impairment. J. Alzheimers Dis. 42, S443–S451 (2014).

    Article  PubMed  Google Scholar 

  117. Nijskens, C. M. et al. Is it time for Heart–Brain clinics? A clinical survey and proposition to improve current care for cognitive problems in heart failure. Clin. Cardiol. 47, e24200 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li, Y. et al. Neighborhood racial and ethnic segregation and the risk of dementia in older adults living with kidney failure. J. Am. Soc. Nephrol. 35, 936–948 (2024).

    Article  PubMed  Google Scholar 

  119. Taubman, S. L., Robins, J. M., Mittleman, M. A. & Hernán, M. A. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. Int. J. Epidemiol. 38, 1599–1611 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Young, J. G., Cain, L. E., Robins, J. M., O’Reilly, E. J. & Hernán, M. A. Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula. Stat. Biosci. 3, 119–143 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Naimi, A. I., Cole, S. R. & Kennedy, E. H. An introduction to g methods. Int. J. Epidemiol. 46, 756–762 (2017).

    PubMed  Google Scholar 

  122. VanderWeele, T. J. & Tchetgen Tchetgen, E. J. Mediation analysis with time varying exposures and mediators. J. R. Stat. Soc. Ser. B Stat. Methodol. 79, 917–938 (2017).

    Article  Google Scholar 

  123. Robins, J. M., Hernán, M. A. & Brumback, B. Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Wehbe, R. M. et al. Deep learning for cardiovascular imaging: a review. JAMA Cardiol. 8, 1089–1098 (2023).

    Article  PubMed  Google Scholar 

  125. Oikonomou, E. K. & Khera, R. Machine learning in precision diabetes care and cardiovascular risk prediction. Cardiovasc. Diabetol. 22, 259 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Haug, C. J. & Drazen, J. M. Artificial intelligence and machine learning in clinical medicine, 2023. N. Engl. J. Med. 388, 1201–1208 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Giddings, R. et al. Factors influencing clinician and patient interaction with machine learning-based risk prediction models: a systematic review. Lancet Digit. Health 6, e131–e144 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. VanderWeele, T. J. Principles of confounder selection. Eur. J. Epidemiol. 34, 211–219 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lin, S. H. & Ikram, M. A. On the relationship of machine learning with causal inference. Eur. J. Epidemiol. 35, 183–185 (2020).

    Article  PubMed  Google Scholar 

  130. Feuerriegel, S. et al. Causal machine learning for predicting treatment outcomes. Nat. Med. 30, 958–968 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Mitra, N., Roy, J. & Small, D. The future of causal inference. Am. J. Epidemiol. 191, 1671–1676 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

In the past 5 years, Dr Ikram’s work has been supported by various institutions and funding agencies, including Erasmus University Medical Center, Erasmus Trustfonds, Netherlands Research Council (NWO), Netherlands Organisation for Health Research and Development (ZonMw), Health-Holland, EU Horizon 2020 Programme, European Research Council, EIT Health, Nederlandse Hartstichting, Alzheimer Association, Alzheimer Nederland, Stichting Parkinson Fonds, and Janssen Pharmaceutical Companies of Johnson & Johnson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arfan Ikram.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Causal inference

A framework of conceptual reasoning and analytical approach to strengthen causal conclusions in empirical research.

Confounder

A shared risk factor between the exposure and the outcome. The presence of a confounder can lead to a spurious association between exposure and outcome. (Note that a single variable in a dataset may be a source of either confounding or interaction, or both mediation and interaction at the same time).

Cross-lagged analyses

An analytical approach using repeated measurements, in which several variables are analysed concomitantly, enabling the study of multiple causal directions. For instance, such analyses would not only model variable A causing B, but also model B causing A.

Effect modification

A phenomenon where the effect of an exposure on an outcome varies depending on the level of another variable, called the effect modifier. Effect modifiers can point towards biological interaction and are also referred to as moderators.

Exposure

A factor that is of primary interest in a study as a risk factor or marker. In statistical models, the exposure is often referred to as the independent variable.

G-methods

A set of advanced statistical approaches that enables the analysis of complex longitudinal data, for instance, in the presence of time-varying confounding.

Interaction

A phenomenon where the effect of two exposures together on an outcome is different to the sum of the effects of either exposure separately. This concept is closely linked to effect modification.

Inverse probability weighting

A statistical approach that enables estimation (extrapolation) of variables and results to populations other than the population from which the data were generated.

Joint longitudinal-survival model

A statistical approach that allows jointly modelling longitudinal data (i.e. repeated measurements) with survival data (i.e. time to event). Such an approach would be ideal to model the association of kidney function over time (using repeated measurements) with the risk of dementia.

Mediation analysis

An analytical approach to disentangle (mechanistic) pathways from exposures to outcomes. Typically, an overall effect of exposure on outcome is separated into a direct effect and an indirect effect, the latter pointing towards the effect that goes through a mediator of interest.

Mediator

An intermediate factor that (partly) relays the effect of the exposure on the outcome. Mediators may provide mechanistic insights and identify biological pathways linking exposure to outcome. (Note that a single variable in a dataset may be a source of both confounding and interaction or both mediation and interaction at the same time).

Reverse causality

A phenomenon where the association between two variables is in the opposite causal direction from the presumed direction. For instance, in the association of CKD causing dementia the possibility that dementia may in turn cause CKD is indicative of reverse causality.

Selective inclusion

The situation when the inclusion criteria for a study lead to a discrepancy between the population for which the findings of the study are intended (i.e. target population) and the population that is eligible for the study.

Selective participation

The situation when participation in the study leads to a discrepancy between people who were eligible to participate and those who actually participated.

Stratified analyses

An approach in which a total sample size is separated into subgroups (e.g. men versus women; people with diabetes versus people without diabetes). Statistical analyses are then carried out within these subgroups. These subgroups are often termed strata.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikram, M.A. Chronic kidney disease and dementia: an epidemiological perspective. Nat Rev Nephrol (2025). https://doi.org/10.1038/s41581-025-00967-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41581-025-00967-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing