Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities and limitations of B cell depletion approaches in SLE

Abstract

B cell depletion with rituximab, a chimeric monoclonal antibody that selectively targets B cells by binding CD20, has been used off label in severe and resistant systemic lupus erythematosus (SLE) for over two decades. Several biological mechanisms limit the efficacy of rituximab, including immunological reactions towards the chimeric molecule, increased numbers of residual B cells, including plasmablasts and plasma cells, and a post-treatment surge in B cell-activating factor (BAFF) levels. Consequently, rituximab induces remission in only a proportion of patients, and safety issues limit its use. However, the use of rituximab has established the value of B cell depletion strategies in SLE and has guided the development of several improved B cell depletion therapies for SLE. These include enhanced monoclonal antibodies, modalities that redirect the specificity of patient T cells using chimeric antigen receptor T cells or bispecific T cell engagers, and combination treatment that simultaneously inhibits the BAFF pathway. In this Review, we consider evidence gathered from over two decades of using rituximab in SLE and examine how B cell depletion therapies could be further optimized to achieve immunological and clinical efficacy. In addition, we discuss the prospects of B cell depletion strategies for personalized treatment in SLE based on genetic research and studies in pre-symptomatic individuals.

Key points

  • Although the B cell depletion agent rituximab failed to reach its primary end points in randomized controlled trials in systemic lupus erythematosus (SLE), favourable clinical experience has led to its frequent off-label use in patients with SLE.

  • Deep B cell depletion of prolonged duration has been associated with improved clinical response to rituximab.

  • Additional B cell depletion therapies that enhance B cell depletion, reduce immunogenicity, delay relapse of B cell numbers or target memory B cells and plasma cells are under development, although trials comparing these therapies head to head are lacking.

  • Innate and non-immune mechanisms that lead to B cell activation, as well as B cell-independent inflammation, might underlie resistance to B cell depletion therapy.

  • Although enhanced B cell depletion improves clinical responses in patients with SLE, both B cell-driven mechanisms and innate or non-immune mechanisms might need to be targeted to achieve cure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of B cell depletion by rituximab.
Fig. 2: No evidence for increased risk of infections by B cell depletion across multiple trials.
Fig. 3: Emergent B lineage depletion therapies in SLE.
Fig. 4: Options after B cell depletion failure with rituximab with currently licensed or off-label drugs.
Fig. 5: B cell-intrinsic and B cell-extrinsic mechanisms in SLE pathogenesis.

Similar content being viewed by others

References

  1. Aringer, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 71, 1400–1412 (2019).

    PubMed  PubMed Central  Google Scholar 

  2. Looney, R. J. et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum. 50, 2580–2589 (2004).

    CAS  PubMed  Google Scholar 

  3. Leandro, M. J., Edwards, J. C., Cambridge, G., Ehrenstein, M. R. & Isenberg, D. A. An open study of B lymphocyte depletion in systemic lupus erythematosus. Arthritis Rheum. 46, 2673–2677 (2002).

    PubMed  Google Scholar 

  4. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    CAS  PubMed  Google Scholar 

  5. Jones, R. B. et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 363, 211–220 (2010).

    CAS  PubMed  Google Scholar 

  6. Smith, R. M. et al. Rituximab as therapy to induce remission after relapse in ANCA-associated vasculitis. Ann. Rheum. Dis. 79, 1243–1249 (2020).

    CAS  PubMed  Google Scholar 

  7. Guillevin, L. et al. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N. Engl. J. Med. 371, 1771–1780 (2014).

    PubMed  Google Scholar 

  8. Specks, U. et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N. Engl. J. Med. 369, 417–427 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reddy, V. et al. Internalization of rituximab and the efficiency of B cell depletion in rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheumatol. 67, 2046–2055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim, S. H. et al. Fc gamma receptor IIb on target B cells promotes rituximab internalization and reduces clinical efficacy. Blood 118, 2530–2540 (2011).

    PubMed  Google Scholar 

  11. Cole, S. et al. Integrative analysis reveals CD38 as a therapeutic target for plasma cell-rich pre-disease and established rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res. Ther. 20, 85 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Clavarino, G. et al. Novel strategy for phenotypic characterization of human B lymphocytes from precursors to effector cells by flow cytometry. PLoS ONE 11, e0162209 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Álvarez Gómez, J. A. et al. BAFF system expression in double negative 2, activated naïve and activated memory B cells in systemic lupus erythematosus. Front. Immunol. 14, 1235937 (2023).

    PubMed  PubMed Central  Google Scholar 

  14. Rodig, S. J., Shahsafaei, A., Li, B., Mackay, C. R. & Dorfman, D. M. BAFF-R, the major B cell-activating factor receptor, is expressed on most mature B cells and B-cell lymphoproliferative disorders. Hum. Pathol. 36, 1113–1119 (2005).

    CAS  PubMed  Google Scholar 

  15. Tipton, C. M. et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rivero, S. J., Díaz-Jouanen, E. & Alarcón-Segovia, D. Lymphopenia in systemic lupus erythematosus. Clinical, diagnostic, and prognostic significance. Arthritis Rheum. 21, 295–305 (1978).

    CAS  PubMed  Google Scholar 

  17. Dörner, T. & Lipsky, P. E. The essential roles of memory B cells in the pathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 20, 770–782 (2024).

    PubMed  Google Scholar 

  18. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    CAS  PubMed  Google Scholar 

  19. Liu, M. et al. Type I interferons promote the survival and proinflammatory properties of transitional B cells in systemic lupus erythematosus patients. Cell. Mol. Immunol. 16, 367–379 (2019).

    CAS  PubMed  Google Scholar 

  20. Suurmond, J. et al. Patterns of ANA+ B cells for SLE patient stratification. JCI Insight 4, e127885 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Brown, G. J. et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 605, 349–356 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Suurmond, J. et al. Loss of an IgG plasma cell checkpoint in patients with lupus. J. Allergy Clin. Immunol. 143, 1586–1597 (2019).

    CAS  PubMed  Google Scholar 

  23. Eckl-Dorna, J. & Batista, F. D. BCR-mediated uptake of antigen linked to TLR9 ligand stimulates B-cell proliferation and antigen-specific plasma cell formation. Blood 113, 3969–3977 (2009).

    CAS  PubMed  Google Scholar 

  24. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    CAS  PubMed  Google Scholar 

  26. Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Walsh, E. R. et al. Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity. Proc. Natl Acad. Sci. USA 109, 16276–16281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei, C. et al. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J. Immunol. 178, 6624–6633 (2007).

    CAS  PubMed  Google Scholar 

  29. Baxter, R. M. et al. Expansion of extrafollicular B and T cell subsets in childhood-onset systemic lupus erythematosus. Front. Immunol. 14, 1208282 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sasaki, T. et al. Longitudinal immune cell profiling in patients with early systemic lupus erythematosus. Arthritis Rheumatol. 74, 1808–1821 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lam, J. H. & Baumgarth, N. Toll-like receptor mediated inflammation directs B cells towards protective antiviral extrafollicular responses. Nat. Commun. 14, 3979 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jacobi, A. M. et al. HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 69, 305–308 (2010).

    CAS  PubMed  Google Scholar 

  33. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    CAS  PubMed  Google Scholar 

  35. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Reddy, V., Jayne, D., Close, D. & Isenberg, D. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res. Ther. 15, S2 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. McCarthy, E. M. et al. Short-term efficacy and safety of rituximab therapy in refractory systemic lupus erythematosus: results from the British Isles Lupus Assessment Group Biologics Register. Rheumatology 57, 470–479 (2018).

    CAS  PubMed  Google Scholar 

  38. Aguiar, R., Araújo, C., Martins-Coelho, G. & Isenberg, D. Use of rituximab in systemic lupus erythematosus: a single center experience over 14 years. Arthritis Care Res. 69, 257–262 (2017).

    CAS  Google Scholar 

  39. Díaz-Lagares, C. et al. Efficacy of rituximab in 164 patients with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun. Rev. 11, 357–364 (2012).

    PubMed  Google Scholar 

  40. Lan, L., Han, F. & Chen, J. H. Efficacy and safety of rituximab therapy for systemic lupus erythematosus: a systematic review and meta-analysis. J. Zhejiang Univ. Sci. B 13, 731–744 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ramos-Casals, M., Soto, M. J., Cuadrado, M. J. & Khamashta, M. A. Rituximab in systemic lupus erythematosus: a systematic review of off-label use in 188 cases. Lupus 18, 767–776 (2009).

    CAS  PubMed  Google Scholar 

  42. Galarza-Maldonado, C. et al. The administration of low doses of rituximab followed by hydroxychloroquine, prednisone and low doses of mycophenolate mofetil is an effective therapy in Latin American patients with active systemic lupus erythematosus. Autoimmun. Rev. 10, 108–111 (2010).

    CAS  PubMed  Google Scholar 

  43. Vital, E. M. et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum. 63, 3038–3047 (2011).

    CAS  PubMed  Google Scholar 

  44. Turner-Stokes, T. et al. The efficacy of repeated treatment with B-cell depletion therapy in systemic lupus erythematosus: an evaluation. Rheumatology 50, 1401–1408 (2011).

    CAS  PubMed  Google Scholar 

  45. Anolik, J. H. et al. The relationship of FcγRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum. 48, 455–459 (2003).

    CAS  PubMed  Google Scholar 

  46. Robinson, J. I. et al. Comprehensive genetic and functional analyses of Fc gamma receptors influence on response to rituximab therapy for autoimmunity. EBioMedicine 86, 104343 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Vital, E. M., Dass, S., Buch, M. H., Rawstron, A. C. & Emery, P. An extra dose of rituximab improves clinical response in rheumatoid arthritis patients with initial incomplete B cell depletion: a randomised controlled trial. Ann. Rheum. Dis. 74, 1195–1201 (2015).

    CAS  PubMed  Google Scholar 

  48. Albert, D. et al. Variability in the biological response to anti-CD20 B cell depletion in systemic lupus erythaematosus. Ann. Rheum. Dis. 67, 1724–1731 (2008).

    CAS  PubMed  Google Scholar 

  49. Gomez Mendez, L. M. et al. Peripheral blood B cell depletion after rituximab and complete response in lupus nephritis. Clin. J. Am. Soc. Nephrol. 13, 1502–1509 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Anolik, J. H. et al. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum. 50, 3580–3590 (2004).

    CAS  PubMed  Google Scholar 

  51. Anolik, J. H. et al. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 56, 3044–3056 (2007).

    CAS  PubMed  Google Scholar 

  52. Md Yusof, M. Y. et al. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. Ann. Rheum. Dis. 76, 1829–1836 (2017).

    PubMed  Google Scholar 

  53. Weisel, N. M. et al. Comprehensive analyses of B-cell compartments across the human body reveal novel subsets and a gut-resident memory phenotype. Blood 136, 2774–2785 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gunnarsson, I. et al. Histopathologic and clinical outcome of rituximab treatment in patients with cyclophosphamide-resistant proliferative lupus nephritis. Arthritis Rheum. 56, 1263–1272 (2007).

    CAS  PubMed  Google Scholar 

  55. Reddy, V. R. et al. Disparity in peripheral and renal B-cell depletion with rituximab in systemic lupus erythematosus: an opportunity for obinutuzumab? Rheumatology 61, 2894–2904 (2022).

    CAS  PubMed  Google Scholar 

  56. Nishath, H. et al. Persistence of immunoglobulin-producing cells in parotid salivary glands of patients with primary Sjögren’s syndrome after B cell depletion therapy. Ann. Rheum. Dis. 71, 1881 (2012).

    Google Scholar 

  57. Ramwadhdoebe, T. H. et al. Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatology 58, 1075–1085 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Thurlings, R. M. et al. Clinical response, pharmacokinetics, development of human anti-chimaeric antibodies, and synovial tissue response to rituximab treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 69, 409–412 (2010).

    CAS  PubMed  Google Scholar 

  59. Teng, Y. K., Levarht, E. W., Toes, R. E., Huizinga, T. W. & van Laar, J. M. Residual inflammation after rituximab treatment is associated with sustained synovial plasma cell infiltration and enhanced B cell repopulation. Ann. Rheum. Dis. 68, 1011–1016 (2009).

    CAS  PubMed  Google Scholar 

  60. Kavanaugh, A. et al. Assessment of rituximab’s immunomodulatory synovial effects (ARISE trial). 1: clinical and synovial biomarker results. Ann. Rheum. Dis. 67, 402–408 (2008).

    CAS  PubMed  Google Scholar 

  61. Hassan, S. U., Md Yusof, M. Y., Emery, P., Dass, S. & Vital, E. M. Biologic sequencing in systemic lupus erythematosus: after secondary non-response to rituximab, switching to humanised anti-CD20 agent is more effective than belimumab. Front. Med. 7, 498 (2020).

    Google Scholar 

  62. Vital, E. M. et al. Brief report: responses to rituximab suggest B cell-independent inflammation in cutaneous systemic lupus erythematosus. Arthritis Rheumatol. 67, 1586–1591 (2015).

    CAS  PubMed  Google Scholar 

  63. Bao, A., Petri, M. A., Fava, A. & Kang, J. Case series of anifrolumab for treatment of cutaneous lupus erythematosus and lupus-related mucocutaneous manifestations in patients with SLE. Lupus Sci. Med. 10, e001007 (2023).

    PubMed  PubMed Central  Google Scholar 

  64. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    CAS  PubMed  Google Scholar 

  65. He, J. & Li, Z. Dilemma of immunosuppression and infection risk in systemic lupus erythematosus. Rheumatology 62, i22–i29 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodziewicz, M. et al. Early infection risk in patients with systemic lupus erythematosus treated with rituximab or belimumab from the British Isles Lupus Assessment Group Biologics Register (BILA-BR): a prospective longitudinal study. Lancet Rheumatol. 5, e284–e292 (2023).

    CAS  PubMed  Google Scholar 

  67. Furie, R. A. et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81, 100–107 (2022).

    CAS  PubMed  Google Scholar 

  68. Migita, K. et al. Glucocorticoid therapy and the risk of infection in patients with newly diagnosed autoimmune disease. Medicine 92, 285–293 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Patel, N. J. et al. Coronavirus disease 2019 outcomes among recipients of anti-CD20 monoclonal antibodies for immune-mediated diseases: a comparative cohort study. ACR Open. Rheumatol. 4, 238–246 (2022).

    PubMed  Google Scholar 

  70. Md Yusof, M. Y. et al. Breakthrough SARS-CoV-2 infections and prediction of moderate-to-severe outcomes during rituximab therapy in patients with rheumatic and musculoskeletal diseases in the UK: a single-centre cohort study. Lancet Rheumatol. 5, e88–e98 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kawano, Y. et al. Temporal trends in COVID-19 outcomes among patients with systemic autoimmune rheumatic diseases: from the first wave through the initial Omicron wave. Ann. Rheum. Dis. 81, 1742–1749 (2022).

    CAS  PubMed  Google Scholar 

  72. Md Yusof, M. Y. et al. Predicting severe infection and effects of hypogammaglobulinemia during therapy with rituximab in rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 71, 1812–1823 (2019).

    CAS  PubMed  Google Scholar 

  73. Fassbinder, T. et al. Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus. Arthritis Res. Ther. 17, 92 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Marco, H. et al. The effect of rituximab therapy on immunoglobulin levels in patients with multisystem autoimmune disease. BMC Musculoskelet. Disord. 15, 178 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Masoud, S., McAdoo, S. P., Bedi, R., Cairns, T. D. & Lightstone, L. Ofatumumab for B cell depletion in patients with systemic lupus erythematosus who are allergic to rituximab. Rheumatology 57, 1156–1161 (2018).

    CAS  PubMed  Google Scholar 

  76. Cinar, O. K. et al. Ofatumumab use in juvenile systemic lupus erythematosus: a single centre experience. Lupus 30, 527–530 (2021).

    PubMed  Google Scholar 

  77. Haarhaus, M. L., Svenungsson, E. & Gunnarsson, I. Ofatumumab treatment in lupus nephritis patients. Clin. Kidney J. 9, 552–555 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Mysler, E. F. et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 65, 2368–2379 (2013).

    CAS  PubMed  Google Scholar 

  79. Niederfellner, G. et al. Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood 118, 358–367 (2011).

    CAS  PubMed  Google Scholar 

  80. Herter, S. et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol. Cancer Ther. 12, 2031–2042 (2013).

    CAS  PubMed  Google Scholar 

  81. Tipton, T. R. W. et al. Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies. Blood 125, 1901–1909 (2015).

    CAS  PubMed  Google Scholar 

  82. Reddy, V. et al. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology 56, 1227–1237 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT02550652 (2024).

  84. Rovin, B. H. et al. Kidney outcomes and preservation of kidney function with obinutuzumab in patients with lupus nephritis: a post hoc analysis of the NOBILITY trial. Arthritis Rheumatol. 76, 247–254 (2024).

    CAS  PubMed  Google Scholar 

  85. Genentech. Positive phase III results for Genentech’s Gazyva show superiority to standard therapy alone in people with lupus nephritis. Genentech www.gene.com/media/press-releases/15038/2024-09-25/positive-phase-iii-results-for-genentech (2024).

  86. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT04221477 (2024).

  87. Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

    PubMed  PubMed Central  Google Scholar 

  88. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    PubMed  Google Scholar 

  90. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    CAS  PubMed  Google Scholar 

  91. Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease – a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    PubMed  Google Scholar 

  92. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cordas dos Santos, D. M. et al. A systematic review and meta-analysis of nonrelapse mortality after CAR T cell therapy. Nat. Med. 30, 2667–2678 (2024).

    CAS  PubMed  Google Scholar 

  94. Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    CAS  PubMed  Google Scholar 

  95. Zhang, W. et al. Treatment of systemic lupus erythematosus using BCMA-CD19 compound CAR. Stem Cell Rev. Rep. 17, 2120–2123 (2021).

    PubMed  PubMed Central  Google Scholar 

  96. Doglio, M. et al. Regulatory T cells expressing CD19-targeted chimeric antigen receptor restore homeostasis in systemic lupus erythematosus. Nat. Commun. 15, 2542 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, J. et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J. Clin. Invest. 130, 6317–6324 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tur, C. et al. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. https://doi.org/10.1136/ard-2024-226142 (2024).

  99. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    CAS  PubMed  Google Scholar 

  100. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    CAS  PubMed  Google Scholar 

  101. Wang, X. et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell 187, 4890–4904.e9 (2024).

    CAS  PubMed  Google Scholar 

  102. Klein, C., Brinkmann, U., Reichert, J. M. & Kontermann, R. E. The present and future of bispecific antibodies for cancer therapy. Nat. Rev. Drug. Discov. 23, 301–319 (2024).

    CAS  PubMed  Google Scholar 

  103. Gruen, M., Bommert, K. & Bargou, R. C. T-cell-mediated lysis of B cells induced by a CD19xCD3 bispecific single-chain antibody is perforin dependent and death receptor independent. Cancer Immunol. Immunother. 53, 625–632 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Subklewe, M. et al. Application of blinatumomab, a bispecific anti-CD3/CD19 T-cell engager, in treating severe systemic sclerosis: a case study. Eur. J. Cancer 204, 114071 (2024).

    CAS  PubMed  Google Scholar 

  105. Bucci, L. et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat. Med. 30, 1593–1601 (2024).

    CAS  PubMed  Google Scholar 

  106. Alexander, T., Krönke, J., Cheng, Q., Keller, U. & Krönke, G. Teclistamab-induced remission in refractory systemic lupus erythematosus. N. Engl. J. Med. 391, 864–866 (2024).

    PubMed  Google Scholar 

  107. Hagen, M. et al. BCMA-targeted T-cell-engager therapy for autoimmune disease. N. Engl. J. Med. 391, 867–869 (2024).

    PubMed  Google Scholar 

  108. Moreau, P. et al. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 387, 495–505 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Parodis, I. et al. Attainment of remission and low disease activity after treatment with belimumab in patients with systemic lupus erythematosus: a post-hoc analysis of pooled data from five randomised clinical trials. Lancet Rheumatol. 6, e751–e761 (2024).

    CAS  PubMed  Google Scholar 

  110. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Vincent, F. B., Morand, E. F., Schneider, P. & Mackay, F. The BAFF/APRIL system in SLE pathogenesis. Nat. Rev. Rheumatol. 10, 365–373 (2014).

    CAS  PubMed  Google Scholar 

  112. Wu, D. et al. Telitacicept in patients with active systemic lupus erythematosus: results of a phase 2b, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 83, 475 (2024).

    CAS  PubMed  Google Scholar 

  113. Merrill, J. T. et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol. 70, 266–276 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Isenberg, D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann. Rheum. Dis. 74, 2006–2015 (2015).

    CAS  PubMed  Google Scholar 

  115. Carter, L. M., Isenberg, D. A. & Ehrenstein, M. R. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum. 65, 2672–2679 (2013).

    CAS  PubMed  Google Scholar 

  116. Cambridge, G. et al. B cell depletion therapy in systemic lupus erythematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response. Ann. Rheum. Dis. 67, 1011–1016 (2008).

    CAS  PubMed  Google Scholar 

  117. Vallerskog, T. et al. Differential effects on BAFF and APRIL levels in rituximab-treated patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res. Ther. 8, R167 (2006).

    PubMed  PubMed Central  Google Scholar 

  118. Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).

    CAS  PubMed  Google Scholar 

  119. Hsu, B. L., Harless, S. M., Lindsley, R. C., Hilbert, D. M. & Cancro, M. P. Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J. Immunol. 168, 5993–5996 (2002).

    CAS  PubMed  Google Scholar 

  120. Parameswaran, R. et al. Effector-mediated eradication of precursor B acute lymphoblastic leukemia with a novel Fc-engineered monoclonal antibody targeting the BAFF-R. Mol. Cancer Ther. 13, 1567–1577 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. McWilliams, E. M. et al. Anti-BAFF-R antibody VAY-736 demonstrates promising preclinical activity in CLL and enhances effectiveness of ibrutinib. Blood Adv. 3, 447–460 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bowman, S. J. et al. Safety and efficacy of subcutaneous ianalumab (VAY736) in patients with primary Sjögren’s syndrome: a randomised, double-blind, placebo-controlled, phase 2b dose-finding trial. Lancet 399, 161–171 (2022).

    CAS  PubMed  Google Scholar 

  123. Lee, S.-S. et al. Interim safety and efficacy of subcutaneous (s.c.) dose ianalumab (VAY736; anti-BAFF-R mAb) administered monthly over 28 weeks in patients with systemic lupus erythematosus (SLE) [abstract LO-021]. Lupus Sci. Med. 10 (Suppl. 1), A17–A18 (2023).

    Google Scholar 

  124. Cortés-Hernández, J. et al. Safety and efficacy of subcutaneous (s.c.) dose ianalumab (VAY736; anti-BAFFR mAb) administered monthly over 28 weeks in patients with systemic lupus erythematosus (SLE) [abstract POS0120]. Ann. Rheum. Dis. 82, 275–276 (2023).

    Google Scholar 

  125. Atisha-Fregoso, Y. et al. Phase II randomized trial of rituximab plus cyclophosphamide followed by belimumab for the treatment of lupus nephritis. Arthritis Rheumatol. 73, 121–131 (2021).

    CAS  PubMed  Google Scholar 

  126. Kraaij, T. et al. Long-term effects of combined B-cell immunomodulation with rituximab and belimumab in severe, refractory systemic lupus erythematosus: 2-year results. Nephrol. Dial. Transpl. 36, 1474–1483 (2021).

    CAS  Google Scholar 

  127. Aranow, C. et al. Efficacy and safety of sequential therapy with subcutaneous belimumab and one cycle of rituximab in patients with systemic lupus erythematosus: the phase 3, randomised, placebo-controlled BLISS-BELIEVE study. Ann. Rheum. Dis. 83, 1502–1512 (2024).

    CAS  PubMed  Google Scholar 

  128. Shipa, M. et al. Effectiveness of belimumab after rituximab in systemic lupus erythematosus: a randomized controlled trial. Ann. Intern. Med. 174, 1647–1657 (2021).

    PubMed  Google Scholar 

  129. van Schaik, M. et al. Efficacy of belimumab combined with rituximab in severe systemic lupus erythematosus: study protocol for the phase 3, multicenter, randomized, open-label Synbiose 2 trial. Trials 23, 939 (2022).

    PubMed  PubMed Central  Google Scholar 

  130. Shipa, M. et al. Identification of biomarkers to stratify response to B-cell-targeted therapies in systemic lupus erythematosus: an exploratory analysis of a randomised controlled trial. Lancet Rheumatol. 5, e24–e35 (2023).

    CAS  PubMed  Google Scholar 

  131. Chen, W. et al. Distinct transcriptomes and autocrine cytokines underpin maturation and survival of antibody-secreting cells in systemic lupus erythematosus. Nat. Commun. 15, 1899 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Cambridge, G. et al. B cell depletion therapy in systemic lupus erythematosus: effect on autoantibody and antimicrobial antibody profiles. Arthritis Rheumatol. 54, 3612–3622 (2006).

    CAS  Google Scholar 

  133. Ostendorf, L. et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N. Engl. J. Med. 383, 1149–1155 (2020).

    CAS  PubMed  Google Scholar 

  134. Alexander, T. et al. Sustained responses after anti-CD38 treatment with daratumumab in two patients with refractory systemic lupus erythematosus. Ann. Rheum. Dis. 82, 1497–1499 (2023).

    PubMed  Google Scholar 

  135. Roccatello, D. et al. Daratumumab monotherapy for refractory lupus nephritis. Nat. Med. 29, 2041–2047 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Holzer, M. T. et al. Daratumumab for autoimmune diseases: a systematic review. RMD Open 9, e003604 (2023).

    PubMed  PubMed Central  Google Scholar 

  137. Obeng, E. A. et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107, 4907–4916 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Alexander, T. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis. 74, 1474–1478 (2015).

    CAS  PubMed  Google Scholar 

  139. Segarra, A. et al. Efficacy and safety of bortezomib in refractory lupus nephritis: a single-center experience. Lupus 29, 118–125 (2020).

    CAS  PubMed  Google Scholar 

  140. Zhang, H. et al. The short-term efficacy of bortezomib combined with glucocorticoids for the treatment of refractory lupus nephritis. Lupus 26, 952–958 (2017).

    CAS  PubMed  Google Scholar 

  141. Walhelm, T. et al. Clinical experience of proteasome inhibitor bortezomib regarding efficacy and safety in severe systemic lupus erythematosus: a nationwide study. Front. Immunol. 12, 756941 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ishii, T. et al. Multicenter double-blind randomized controlled trial to evaluate the effectiveness and safety of bortezomib as a treatment for refractory systemic lupus erythematosus. Mod. Rheumatol. 28, 986–992 (2018).

    CAS  PubMed  Google Scholar 

  143. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    CAS  PubMed  Google Scholar 

  144. Shao, W. H. & Cohen, P. L. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res. Ther. 13, 202 (2011).

    PubMed  PubMed Central  Google Scholar 

  145. Grieves, J. L. et al. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc. Natl Acad. Sci. USA 112, 5117–5122 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    CAS  PubMed  Google Scholar 

  147. Vinuesa, C. G., Shen, N. & Ware, T. Genetics of SLE: mechanistic insights from monogenic disease and disease-associated variants. Nat. Rev. Nephrol. 19, 558–572 (2023).

    CAS  PubMed  Google Scholar 

  148. Carter, L. M. et al. Blood RNA-sequencing across the continuum of ANA-positive autoimmunity reveals insights into initiating immunopathology. Ann. Rheum. Dis. 83, 1322–1334 (2024).

    CAS  PubMed  Google Scholar 

  149. Care, M. A. et al. Network analysis identifies proinflammatory plasma cell polarization for secretion of ISG15 in human autoimmunity. J. Immunol. 197, 1447–1459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Md Yuzaiful Md, Y. et al. Prediction of autoimmune connective tissue disease in an at-risk cohort: prognostic value of a novel two-score system for interferon status. Ann. Rheum. Dis. 77, 1432 (2018).

    Google Scholar 

  151. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lood, C., Arve, S., Ledbetter, J. & Elkon, K. B. TLR7/8 activation in neutrophils impairs immune complex phagocytosis through shedding of FcgRIIA. J. Exp. Med. 214, 2103–2119 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    PubMed  PubMed Central  Google Scholar 

  155. Gkirtzimanaki, K. et al. IFNα impairs autophagic degradation of mtDNA promoting autoreactivity of SLE monocytes in a STING-dependent fashion. Cell Rep. 25, 921–933.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Kalaaji, M. et al. Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int. 71, 664–672 (2007).

    CAS  PubMed  Google Scholar 

  157. DeGiorgio, L. A. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7, 1189–1193 (2001).

    CAS  PubMed  Google Scholar 

  158. Yurasov, S. et al. Persistent expression of autoantibodies in SLE patients in remission. J. Exp. Med. 203, 2255–2261 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Psarras, A. et al. Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity. Nat. Commun. 11, 6149 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Mathian, A. et al. Ultrasensitive serum interferon-α quantification during SLE remission identifies patients at risk for relapse. Ann. Rheum. Dis. 78, 1669–1676 (2019).

    CAS  PubMed  Google Scholar 

  162. Stockfelt, M. et al. Plasma interferon-alpha protein levels during pregnancy are associated with lower birth weight in systemic lupus erythematosus. Rheumatology https://doi.org/10.1093/rheumatology/keae332 (2024).

  163. Laurent, A. et al. Burden of systemic lupus erythematosus in clinical practice: baseline data from the SLE Prospective Observational Cohort Study (SPOCS) by interferon gene signature. Lupus Sci. Med. 10, e001032 (2023).

    Google Scholar 

  164. Castellano, G. et al. Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res. Ther. 17, 72 (2015).

    PubMed  PubMed Central  Google Scholar 

  165. Toukap, A. N. et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 56, 1579–1588 (2007).

    CAS  Google Scholar 

  166. Stockfelt, M. et al. Activated low-density granulocytes in peripheral and intervillous blood and neutrophil inflammation in placentas from SLE pregnancies. Lupus Sci. Med 8, e000463 (2021).

    PubMed  PubMed Central  Google Scholar 

  167. Reynolds, J. A. et al. Type I interferon in patients with systemic autoimmune rheumatic disease is associated with haematological abnormalities and specific autoantibody profiles. Arthritis Res. Ther. 21, 147 (2019).

    PubMed  PubMed Central  Google Scholar 

  168. Torell, A. et al. Low CD4+ T cell count is related to specific anti-nuclear antibodies, IFNα protein positivity and disease activity in systemic lupus erythematosus pregnancy. Arthritis Res. Ther. 26, 65 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Stockfelt, M. et al. Plasma interferon-alpha is associated with double-positivity for autoantibodies but is not a predictor of remission in early rheumatoid arthritis – a spin-off study of the NORD-STAR randomized clinical trial. Arthritis Res. Ther. 23, 189 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Bekeredjian-Ding, I. B. et al. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J. Immunol. 174, 4043–4050 (2005).

    PubMed  Google Scholar 

  171. Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225–234 (2003).

    CAS  PubMed  Google Scholar 

  172. Ittah, M. et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren’s syndrome. Arthritis Res. Ther. 8, R51 (2006).

    PubMed  PubMed Central  Google Scholar 

  173. Eloranta, M. L. et al. Regulation of the interferon-α production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. Arthritis Rheum. 60, 2418–2427 (2009).

    CAS  PubMed  Google Scholar 

  174. Hua, J., Kirou, K., Lee, C. & Crow, M. K. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 54, 1906–1916 (2006).

    CAS  PubMed  Google Scholar 

  175. Chasset, F. et al. Rare diseases that mimic systemic lupus erythematosus (lupus mimickers). Joint Bone Spine 86, 165–171 (2019).

    PubMed  Google Scholar 

  176. König, N. et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76, 468–472 (2017).

    PubMed  Google Scholar 

  177. Tsokos, G. C., Lo, M. S., Costa Reis, P. & Sullivan, K. E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 12, 716–730 (2016).

    CAS  PubMed  Google Scholar 

  178. Crawford, J. D. et al. The XIST lncRNA is a sex-specific reservoir of TLR7 ligands in SLE. JCI Insight 8, e169344 (2023).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. M.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Edward M. Vital.

Ethics declarations

Competing interests

M.S. declares no competing interests. E.M.V. has received consultancy fees from Roche, GSK, AstraZeneca, UCB, Otsuka, BMS, Pfizer, Abbvie, Pfizer, Alpine, Alumis, Merck, BMS, Aurinia Pharmaceuticals, Lilly and Novartis, and has also received research grants paid to his employer from AstraZeneca and Sandoz. Y.K.O.T. has received grants/research support from the Dutch Arthritis Foundation, Autoimmune Research & Collaboration (ARCH) Foundation, Dutch Kidney Foundation, Netherlands Organization for Scientific Research, GSK, CSL Vifor and LUMC, and has received consulting fees from AstraZeneca, Alexion, GSK, Novartis, Otsuka Pharmaceuticals and Vifor Pharma.

Peer review

Peer review information

Nature Reviews Rheumatology thanks William Stohl, Gregg Silverman and Muhammad Shipa for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

B cell-activating factor

Also called B lymphocyte stimulator; a potent B cell activator and survival factor that promotes B cell maturation.

Double-negative B cells

B cells that have class switched and lack expression of IgD but also the memory marker CD27. Of these, DN2 cells have higher expression of CD11c and T-BET and are increased in the circulation in patients with SLE.

Fcγ receptor III

Activating Fc receptor that mediates interaction between the Fc ___domain of antibodies and FcγR-bearing effector cells.

Plasmablasts

A heterogeneous subset of short-lived circulating antibody-producing cells that might lie outside a CD19+ lymphocyte gate in flow cytometry and can be defined as CD3CD14CD19+/CD38++CD27++ mononuclear cells.

Transitional B cells

B cells that have successfully recombined their surface receptor and exited the bone marrow but are not yet fully mature. Depending on their stage of transition, they can be CD24hiCD38hi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stockfelt, M., Teng, Y.K.O. & Vital, E.M. Opportunities and limitations of B cell depletion approaches in SLE. Nat Rev Rheumatol 21, 111–126 (2025). https://doi.org/10.1038/s41584-024-01210-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01210-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing