Extended Data Fig. 8: Temperature-dependent linear dichroism in the Dirac cone photoemission intensity. | Nature

Extended Data Fig. 8: Temperature-dependent linear dichroism in the Dirac cone photoemission intensity.

From: Prediction and observation of an antiferromagnetic topological insulator

Extended Data Fig. 8

a, Dispersion of MnBi2Te4(0001) measured at 18 K with a photon energy of 21.5 eV and p-polarized light along the \(\bar{{\rm{K}}}\mbox{--}\bar{\Gamma }\mbox{--}\bar{{\rm{K}}}\) direction. b, Momentum distribution curves representation of the data acquired at 18 K (blue) and 80 K (red). c, Linear dichroism (Iright − Ileft), where Iright and Ileft are the intensities of the right and left branches of the upper and lower cone corresponding to positive and negative k, respectively. The measurements were performed on D samples. d, Upper part of the MnBi2Te4(0001) gapped Dirac cone as calculated ab initio. The size of the coloured circles reflects the value and sign of the spin vector Cartesian projections, with red (blue) corresponding to the positive (negative) sy components (perpendicular to kz), and yellow (cyan) to the out-of-plane components +sz (−sz). e, As in d, but with the size of the purple circles reflecting the weight of the px orbitals of all Bi and Te atoms of the topmost septuple-layer block at each k. Note that in de the bulk-like bands of the slab are omitted. The magnetic moment of the topmost Mn layer points towards vacuum, but in Fig. 1e and Extended Data Fig. 6 it points in the opposite direction. f, The weight of the s, px, py and pz orbitals of all Bi and Te atoms of the topmost septuple-layer block for the left (triangles) and right (squares) branches as a function of energy. See Methods for more information on the dichroic ARPES measurements.

Back to article page