Extended Data Fig. 7: CRISPR deletion of MCT1 from mouse melanoma cells impairs metastasis, whereas MCT1 overexpression in patient-derived xenografts increases metastasis. | Nature

Extended Data Fig. 7: CRISPR deletion of MCT1 from mouse melanoma cells impairs metastasis, whereas MCT1 overexpression in patient-derived xenografts increases metastasis.

From: Metabolic heterogeneity confers differences in melanoma metastatic potential

Extended Data Fig. 7

Related to Fig. 2. a, Western blot analysis of MCT1 in wild-type parental YUMM1.7 melanoma cells as well as two lines from which MCT1 had been deleted using CRISPR (KO #1 and #2). b–d, Growth of subcutaneous tumours (b), total metastatic disease burden at end point by bioluminescence imaging of visceral organs (c) and CellRox DeepRed staining of subcutaneous tumour cells (d). The number of mice analysed in each treatment is indicated (one experiment; note that one mouse died in the KO #2 treatment before end-point analysis). e, Western blot analysis of MCT1 in an inefficiently metastasizing melanoma (UM47) expressing MCT1 cDNA. f, g, Growth of subcutaneous tumours (f) and total metastatic disease burden at end point by bioluminescence imaging of visceral organs (g) from mice transplanted with these melanomas (one experiment; note that two mice died in the control treatment before end-point analysis). Data are mean ± s.d. Statistical significance was assessed using one-way ANOVA followed by Dunnett’s multiple comparison adjustment (b, day 25) or log2-transformed one-way ANOVAs followed by Dunnett’s multiple comparisons adjustment (c, d), t-test (f, day 90) or log2-transformed t-test (g).

Source Data

Back to article page