Extended Data Fig. 11: Properties of putative PcG target genes.
From: An atlas of dynamic chromatin landscapes in mouse fetal development

a, TSSs are binned together according to the number of tissue-stages in which they are marked by Hc-P (0–66, x-axis). For each bin, the fraction of TSSs that are K4 + K27 (bivalent), K27 (repressed), K4 (active), or has no K4 or K27 in mouse ES cells is plotted, as reported previously29. b–d, Similar schema to a, but plotting the fraction of TSSs bound by RING1B (PRC1 component), EZH2 (PRC2 component), or SUZ12 (PRC2 component) in mouse ES cells, as previously reported30. e, Comparison of Hc-P regions as reported here and DMVs from ref. 7. Left, metrics related to regions annotated as Hc-P in each tissue-stage (x-axis). From top to bottom: number of Hc-P regions in each tissue-stage; coverage of Hc-P in each tissue-stage; fraction of Hc-P regions that overlap a TSS; fraction of Hc-P regions that overlap a DMV. Right, metrics related to regions annotated as DMVs in each tissue-stage (x-axis). From top to bottom: number of DMVs in each tissue-stage; coverage of DMVs in each tissue-stage; fraction of DMV regions that overlap a TSS; fraction of DMV regions that overlap a Hc-P region. f, Schema as in a–d, but with axes switched. For each bin, the fraction of TSSs that overlap a CGI is plotted on the x-axis. g–j, The following properties of CGIs that overlapped Hc-P TSSs are plotted (left to right): CGI length; CpG number; CPG percentage; GC percentage. None of these properties is strongly correlated with the number of tissue-stages in which a given TSS is marked by Hc-P (x-axis), supporting the role of factors other than CGIs in recruiting or excluding PcG at target promoters in a tissue- and/or stage-restricted fashion94,95. Green line shows LOESS smooth curve, span 0.25 and degree 1.