Extended Data Fig. 8: Single-crystal perovskite thin-film light-emitting diodes and photodetectors fabricated using this growth-and-transfer method.
From: A fabrication process for flexible single-crystal perovskite devices

a, Transferred single-crystal MAPbBr3 arrays with each pixel about 100 μm by 100 μm. Inset: the transferred single-crystal MAPbI3 micro light-emitting diode arrays with each pixel about 1 μm by 1 μm. b, SEM images showing the textured single-crystal MAPbI3 thin film as a photodetector. Inset: a magnified SEM image of the cross-sectional structure of the device. PI, polyimide. c, Finite-difference time-___domain optical simulation of the overall absorption by the textured structure (left) and the flat structure (right). The absorption by the textured thin film is much higher than that by the flat one because of the anti-reflective effect. d, EQE measurements of different device morphologies. The textured single-crystal film shows the highest quantum efficiency, which comes from the reduced surface reflections. e, Dark current measurements on both textured and flat single-crystal devices show that the current levels are similar, indicating the pinhole-free and high-quality thin films. The higher light current of the textured device reveals its higher absorption compared with the flat device. f, Responsivity results show that the textured devices are more sensitive to the input power. The inset shows that the textured devices exhibit a higher detectivity than the flat devices. The decreasing tendencies of the responsivity and detectivity at high input power may be due to the material degradation under strong light intensities.