Extended Data Fig. 11: Comparing zebrafish evolutionary breakpoints with TAD annotation.
From: A map of cis-regulatory elements and 3D genome structures in zebrafish

a. Similar to Fig. 5d. Enrichment of evolutionary breakpoints at TAD boundaries. Relative positions of evolutionary breakpoints to TADs in 15 vertebrates. In all cases, we found that the evolutionary breakpoints were enriched at zebrafish TAD boundaries and depleted from the centre of TADs. Grey vertical bar labels the TAD body area. b, By comparing zebrafish with 17 vertebrates, H3K4me3 signals were found to be more enriched at TAD boundaries with breakpoints than those without breakpoints. Orange vertical bar labels the TAD boundaries. c, Higher H3K4me3 levels at breakpoint-containing TAD boundaries when using TADs annotation from zebrafish muscle were found as well, similar to Fig. 5g. d, H3K4me3 enrichment in human ESCs (H1) TAD boundaries with or without zebrafish-to-human breakpoints. e, H3K4me3 enrichment in mouse ESCs TAD boundaries with or without zebrafish-to-mouse breakpoints. f, H3K4me3 enrichment in human ESCs (H1) TAD boundaries with or without mouse-to-human breakpoints.