Fig. 4: Formation of the REE distribution patterns in Chang’e-5 basalts. | Nature

Fig. 4: Formation of the REE distribution patterns in Chang’e-5 basalts.

From: Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane

Fig. 4

a, Comparison of REE distribution patterns of Chang’e-5 and Apollo basalts. Apollo (A) and Luna (L) data are from Clive Neal’s Mare Basalt Database (https://www3.nd.edu/~cneal/Lunar-L/). The Apollo 14 groups A, B and C were defined by ref. 42. b, REE modelling of partial melting and fractional crystallization. The blue areas denote the melts produced after 2–3% partial melting of the mantle source (86 PCS + 2% TIRL22; PCS, per cent crystallized solid; TIRL, trapped instantaneous residual liquid) and those followed by 43–78% fractional crystallization. This source composition is calculated based on the source region 87Rb/86Sr and 147Sm/144Nd ratios (Fig. 3). Mineral modes in the source are assumed to be 48% olivine, 23% orthopyroxene, 23% pigeonite, 3% augite and 3% plagioclase. Mineral assemblages of 43–78% crystallization are: 5–10% olivine, 25–59% augite, 2–3% pigeonite and 6–11% plagioclase. Normalization values are from ref. 43. The Chang’e-5 parental melt estimated by the clinopyroxene core with the highest Mg# (sample 406-004, 005) (Extended Data Table 6) requires extensive (43–78%) fractional crystallization after low-degree (2–3%) melting of the mantle source. To match the Chang’e-5 bulk composition, up to 78–88% fractional crystallization is needed. The model parameters are listed in Supplementary Table 3, and details of the batch melting and fractional crystallization model are provided in the Methods.

Source Data

Back to article page