Fig. 3: High-quality neoantigens are immunoedited in LTS  PDACs. | Nature

Fig. 3: High-quality neoantigens are immunoedited in LTS  PDACs.

From: Neoantigen quality predicts immunoediting in survivors of pancreatic cancer

Fig. 3

a, Neoantigen quality model. b, The model and experimental approach to estimate cross-reactivity distance C. c, d, Measured (top) and fitted (bottom) pMT–TCR activation curves (c, amino acid (AA) position 4), and activation heat maps (d, all amino acid positions) for stronger and weaker pWT–TCR pairs. e, Composite pMT–TCR EC50 values of all stronger and weaker pWT–TCR pairs. f, pMT–TCR activation heat map and observed versus modelled C(pWT, pMT) for the HLA-B*27:05-restricted pWT–TCR pair. n indicates the number of single-amino-acid-substituted pWT, pMT and pMT, pMT pairs. g, Cross-reactivity distance model C and dendrogram of agglomerative clustering of substitution matrix M. h, Observed amino acid substitution frequency versus matrix M-defined substitution distance in primary and recurrent STS and LTS PDACs. M distance is the matrix M-defined amino acid distance from g. Circles indicate substituted residues. n indicates the number of substitutions. i, Cumulative probability distributions of log(C) and D. n indicates the number of neoantigens. The red rectangles in the heat maps indicate amino acids in pWT. The green line is a linear regression fit. Heat maps are ordered according to the amino acid order in the dendogram in g. P values were determined using two-tailed Pearson correlation (f and h) and two-sided Kolmogorov–Smirnov tests (i).

Source data

Back to article page