Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

β-C−H bond functionalization of ketones and esters by cationic Pd complexes

Abstract

C–H activation is the most direct way of functionalizing organic molecules. Many advances in this field still require specific directing groups to achieve the necessary activity and selectivity. Developing C–H activation reactions directed by native functional groups is essential for their broad application in synthesis1. Over the past decade, several generations of bifunctional ligands developed have enabled C(sp3)–H activation reactions of free carboxylic acids2, free aliphatic amines3, native amides4,5 and alcohols6. However, an effective catalyst for ketones and carboxylic esters remains to be realized. Here we report diverse methyl β-C−H functionalizations, including intermolecular arylation, hydroxylation and intramolecular C(sp3)–H/C(sp2)–H coupling of ketones and carboxylic esters with a monoprotected amino neutral amide (MPANA) ligand. The in situ generation of cationic Pd(II) complexes by the combination MPANA ligand and HBF4 is crucial for achieving the reactivity. The compatibility of these reactions with cyclic ketones and lactams provides a method to access spirocyclic and fused ring systems. Mechanistic experiments and density functional theory studies support the role of cationic Pd complexes with MPANA ligands in enhancing catalyst–substrate affinity and facilitating the C−H cleavage step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1:  Challenges in and strategy for free-ketone and ester directed C(sp3)–H activation.
Fig. 2: Intermolecular methyl β-C–H arylation: ligand, condition development and substrate scope.
Fig. 3: Intramolecular C–C bond formation by methyl C(sp3)–H/C(sp2)–H coupling.
Fig. 4: Intermolecular methyl β-C–H oxidation: substrate scope.

Similar content being viewed by others

Data availability

Crystallographic data for compound 7eb are available in Supplementary Information files and from the Cambridge Crystallographic Data Center under reference numbers CCDC 2355481. All other data supporting the findings of this study are available in the Article and Supplementary Information.

References

  1. Engle, K. M., Wu, H.-C. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

    Article  CAS  PubMed  MATH  Google Scholar 

  2. Giri, R. et al. Palladium-catalyzed methylation and arylation of sp2 and sp3 C–H bonds in simple carboxylic acids. J. Am. Chem. Soc. 129, 3510–3511 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature 510, 129–133 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Zhao, R. & Lu, W. Palladium-catalyzed β-arylation of amide via primary sp3 C–H activation. Organometallics 37, 2188–2192 (2018).

    Article  CAS  MATH  Google Scholar 

  5. Park, H., Chekshin, N., Shen, P.-X. & Yu, J.-Q. Ligand-enabled, palladium-catalyzed β-C(sp3)–H arylation of Weinreb amides. ACS Catal. 8, 9292–9297 (2018).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  6. Strassfeld, D. A. et al. Hydrogen-bond-acceptor ligands enable distal C(sp3)–H arylation of free alcohols. Nature 622, 80–86 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mukaiyama, T. Explorations into new reaction chemistry. Angew. Chem. Int. Ed. 43, 5590–5614 (2004).

    Article  CAS  Google Scholar 

  8. Evans, D. A., Vogel, E. & Nelson, J. V. Stereoselective aldol condensations via boron enolates. J. Am. Chem. Soc. 101, 6120–6123 (1979).

    Article  CAS  Google Scholar 

  9. Myers, A. G. et al. Pseudoephedrine as a practical chiral auxiliary for the synthesis of highly enantiomerically enriched carboxylic acids, alcohols, aldehydes, and ketones. J. Am. Chem. Soc. 119, 6496–6511 (1997).

    Article  CAS  MATH  Google Scholar 

  10. Constable, A. G., Mcdonald, W. S., Sawkins, L. C. & Shaw, B. L. Palladation of dimethylhydrazones, oximes, and oxime O-allyl ethers: crystal structure of [Pd3(ON = CPriPh)6]. J. Chem. Soc. Chem. Commun. 1978, 1061–1062 (1978).

    Article  Google Scholar 

  11. Desai, L. V., Hull, K. L. & Sanford, M. S. Palladium-catalyzed oxygenation of unactivated sp3 C−H bonds. J. Am. Chem. Soc. 126, 9542–9543 (2004).

    Article  CAS  PubMed  MATH  Google Scholar 

  12. Thu, H. Y., Yu, W. Y. & Che, C. M. Intermolecular amidation of unactivated sp2 and sp3 C–H bonds via palladium-catalyzed cascade C–H activation/nitrene insertion. J. Am. Chem. Soc. 128, 9048–9049 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Zhu, R. Y., Liu, L. Y. & Yu, J. Q. Highly versatile β-C(sp3)-H iodination of ketones using a practical auxiliary. J. Am. Chem. Soc. 139, 12394–12397 (2017).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  14. Zhu, R.-Y. et al. Versatile alkylation of (hetero)aryl iodides with ketones via β-C(sp3)–H activation. J. Am. Chem. Soc. 139, 16080–16083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, F.-L., Hong, K., Li, T.-J., Park, H. & Yu, J.-Q. Functionalization of C(sp3)−H bonds using a transient directing group. Science 351, 252–256 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  16. Hong, K., Park, H. & Yu, J.-Q. Methylene C(sp3)–H arylation of aliphatic ketones using a transient directing group. ACS Catal. 7, 6938–6941 (2017).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  17. Pan, L., Yang, K., Li, G. & Ge, H. Palladium-catalyzed site-selective arylation of aliphatic ketones enabled by a transient ligand. Chem. Commun. 54, 2759–2762 (2018).

    Article  CAS  Google Scholar 

  18. Li, Y.-H., Ouyang, Y. X., Chekshin, N. & Yu, J.-Q. Pd-II-catalyzed-C(sp3)–H (hetero) arylation of ketones enabled by transient directing groups. ACS Catal. 12, 10581–10586 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  19. St John-Campbell, S., White, A. J. P. & Bull, J. A. Single operation palladium catalysed C(sp3)–H functionalisation of tertiary aldehydes: investigations into transient imine directing groups. Chem. Sci. 8, 4840–4847 (2017).

    Article  Google Scholar 

  20. Li, Y.-H., Ouyang, Y., Chekshin, N. & Yu, J.-Q. PdII–catalyzed site-selective β- and γ-C(sp3)–H arylation of primary aldehydes controlled by transient directing groups. J. Am. Chem. Soc. 144, 4727–4733 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, B., Romine, A. M., Rubel, C. Z., Engle, K. M. & Shi, B.-F. Transition-metal-catalyzed, coordination-assisted functionalization of nonactivated C(sp3)–H bonds. Chem. Rev. 121, 14957–15074 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  23. Shabashov, D. & Daugulis, O. Catalytic coupling of C–H and C–I bonds using pyridine as a directing group. Org. Lett. 7, 3657–3659 (2005).

    Article  CAS  PubMed  MATH  Google Scholar 

  24. Alvarez, S. Coordinating ability of anions, solvents, amino acids, and gases towards alkaline and alkaline-earth elements, transition metals, and lanthanides. Chem. Eur. J. 26, 4350–4377 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  25. Christian, L. & Gal, J.-F. Lewis Basicity and Affinity Scales: Data and Measurement (Wiley, 2010).

  26. Wu, Q.-F. et al. Formation of α-chiral centers by asymmetric β-C(sp3)–H arylation, alkenylation, and alkynylation. Science 355, 499–503 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  27. Shen, P.-X., Hu, L., Shao, Q., Hong, K. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C(sp3)–H arylation of free carboxylic acids. J. Am. Chem. Soc. 140, 6545–6549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, G. et al. Ligand-accelerated enantioselective methylene C(sp3)–H bond activation. Science 353, 1023–1027 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  29. Zhuang, Z. et al. Ligand-enabled β-C(sp3)–H olefination of free carboxylic acids. J. Am. Chem. Soc. 140, 10363–10367 (2018).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  30. Ng, P. et al. Preparation of 3-spiro-7-hydroxamic acid tetralins as histone deacetylase inhibitors. Patent WO 2016/168660 A1 (2016).

  31. Li, Z. & Yu, J.-Q. Ligand-enabled γ-C(sp3)–H hydroxylation of free amines with aqueous hydrogen peroxide. J. Am. Chem. Soc. 145, 25948–25953 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Scripps Research Institute and the NIH (National Institute of General Medical Sciences grants 2R01GM084019). We also thank D. A. Strassfeld for assistance with automated conformational searches and discussions throughout this project. We thank J. Chen, B. Sanchez, Q. N. Wong and J. Lee of the Scripps Automated Synthesis Facility for assistance with mass spectrometry. We also thank M. Gembicky and J. Bailey of the UCSD Crystallography Facility for X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

J.-Q.Y. conceived the project. Y.-H.L. developed the MPANA ligand, reaction conditions and substrates scope. N.C. and Y.L. performed the DFT studies. J.-Q.Y. and Y.-H.L. prepared the paper. J.-Q.Y. directed the project.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Ineffective ligands for intermolecular methyl β-C–H arylation.

Reaction conditions: substrate (0.1 mmol), Pd(OAc)2 (10 mol%), with or without ligand (10 mol%), 4-iodotoluene (2.0 equiv.), Ag2CO3 (2.0 equiv.), Et2O·HBF4 (1.5 equiv.), HFIP (2.0 ml), 80 °C, 12 h.

Extended Data Fig. 2 Mechanistic investigations.

A, Deuterium incorporation experiments condition: 1a (0.1 mmol), Pd(OAc)2 (10 mol%), ArI (2.0 equiv.), ligand L1 (10 mol%), Ag2CO3 (2.0 equiv.), DOTf (1.5 equiv.), HFIP-OD (2.0 ml), 80 °C, 12 h. B, Parallel kinetic isotopic effect (KIE) studies condition: 1f or [D3]1f (0.1 mmol), Pd(OAc)2 (10 mol%), ArI (2.0 equiv.), ligand L1 (10 mol%), Ag2CO3 (2.0 equiv.), Et2O·HBF4 (1.5 equiv.), HFIP (2.0 ml), 80 °C, 3-75 min. C, Palladium charge and ligand effects on the C(sp3)−H cleavage step. i) Effect of cationic Pd on substrate coordination. ii) Ligand effect on C(sp3)−H cleavage transition state (TS). All quasi-harmonic free energies are reported at 353 K relative to separated reactants. D, C(sp3)−H hydroxylation with water as a solo hydroxyl source. Reaction conditions: 1s (0.1 mmol), PdCl2(PPh3)2 (10 mol%), ligand L3 (10 mol%), Selectfluor (2.5 equiv.), Ag2CO3 (1.5 equiv.), Et2O·HBF4 (1.5 equiv.), water (2.0 equiv.), HFIP (2.0 ml), 50 °C, 48 h, under N2.

Supplementary information

Supplementary Information

Supplementary Sections 1–15; see Contents for details.

Peer Review file

Crystallographic Data (7b)

Crystallographic data for compound 7b

Crystallographic Data (7eb)

Crystallographic data for compound 7eb

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YH., Chekshin, N., Lu, Y. et al. β-C−H bond functionalization of ketones and esters by cationic Pd complexes. Nature 637, 608–614 (2025). https://doi.org/10.1038/s41586-024-08281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08281-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing