Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Fungal impacts on Earth’s ecosystems

Abstract

Over the past billion years, the fungal kingdom has diversified to more than two million species, with over 95% still undescribed. Beyond the well-known macroscopic mushrooms and microscopic yeast, fungi are heterotrophs that feed on almost any organic carbon, recycling nutrients through the decay of dead plants and animals and sequestering carbon into Earth’s ecosystems. Human-directed applications of fungi extend from leavened bread, alcoholic beverages and biofuels to pharmaceuticals, including antibiotics and psychoactive compounds. Conversely, fungal infections pose risks to ecosystems ranging from crops to wildlife to humans; these risks are driven, in part, by human and animal movement, and might be accelerating with climate change. Genomic surveys are expanding our knowledge of the true biodiversity of the fungal kingdom, and genome-editing tools make it possible to imagine harnessing these organisms to fuel the bioeconomy. Here, we examine the fungal threats facing civilization and investigate opportunities to use fungi to combat these threats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Climate change will disrupt fungal interactions in Earth’s ecosystems and is likely to increase fungal diseases in plants, wildlife and humans.
Fig. 2: Control strategies to combat fungal infections.
Fig. 3: The fungal kingdom offers many known and emerging solutions to global challenges facing humanity.

Similar content being viewed by others

References

  1. Hawksworth, D. L. & Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5, FUNK-0052-2016 (2017).

    Article  Google Scholar 

  2. Baldrian, P., Kohout, P. & Větrovský, T. in Evolution of Fungi and Fungal-Like Organisms (eds. Pöggeler, S. & James, T.) 227–238 (Springer, 2023).

  3. Niskanen, T. et al. Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. 48, 149–176 (2023).

    Article  MATH  Google Scholar 

  4. Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115 (2018).

    Article  PubMed  MATH  Google Scholar 

  5. Bergman, A. & Casadevall, A. Mammalian endothermy optimally restricts fungi and metabolic costs. mBio 1, e00212-10 (2010).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  6. Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428–e438 (2024).

    Article  PubMed  MATH  Google Scholar 

  7. Lilleskov, E. A., Kuyper, T. W., Bidartondo, M. I. & Hobbie, E. A. in Atmospheric Nitrogen Deposition to Global Forests (eds. Du, E. & de Vries, W.) 95–118 (Academic, 2024).

  8. Raza, M. M. & Bebber, D. P. Climate change and plant pathogens. Curr. Opin. Microbiol. 70, 102233 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  9. Head, J. R. et al. Effects of precipitation, heat, and drought on incidence and expansion of coccidioidomycosis in western USA: a longitudinal surveillance study. Lancet Planet. Health 6, e793–e803 (2022).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  10. Steidinger, B. S. et al. Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. J. Biogeogr. 47, 772–782 (2020).

    Article  Google Scholar 

  11. Qin, C., Pellitier, P. T., Van Nuland, M. E., Peay, K. G. & Zhu, K. Niche modelling predicts that soil fungi occupy a precarious climate in boreal forests. Glob. Ecol. Biogeogr. 32, 1127–1139 (2023).

    Article  Google Scholar 

  12. Van Nuland, M. E. et al. Above- and belowground fungal biodiversity of Populus trees on a continental scale. Nat. Microbiol. 8, 2406–2419 (2023).

    Article  PubMed  MATH  Google Scholar 

  13. Robert, V. A. & Casadevall, A. Vertebrate endothermy restricts most fungi as potential pathogens. J. Infect. Dis. 200, 1623–1626 (2009).

    Article  PubMed  Google Scholar 

  14. Seidel, D. et al. Impact of climate change and natural disasters on fungal infections. Lancet Microbe 5, e594–e605 (2024).

    Article  PubMed  MATH  Google Scholar 

  15. Garcia-Solache, M. A. & Casadevall, A. Global warming will bring new fungal diseases for mammals. mBio 1, e00061-10 (2010).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  16. Salthammer, T. et al. A holistic modeling framework for estimating the influence of climate change on indoor air quality. Indoor Air 32, e13039 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Awaab Ishak and the politics of mould in the UK. eClinicalMedicine 54, 101801 (2022).

  18. Li, Y. et al. Impact of Hurricane Harvey on inpatient asthma hospitalization visits within southeast Texas, 2016–2019. J. Occup. Environ. Med. 65, 924–930 (2023).

    Article  PubMed  MATH  Google Scholar 

  19. Toda, M. et al. Invasive mold infections following Hurricane Harvey—Houston, Texas. Open Forum Infect. Dis. 10, ofad093 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mulchandani, R. et al. The English National Cohort Study of Flooding & Health: psychological morbidity at three years of follow up. BMC Public Health 20, 321 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Doehlemann, G., Ökmen, B., Zhu, W. & Sharon, A. Plant pathogenic fungi. Microbiol. Spectr. 5, FUNK-0023-2016 (2017).

    Article  Google Scholar 

  22. Stukenbrock, E. & Gurr, S. Address the growing urgency of fungal disease in crops. Nature 617, 31–34 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  23. Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Robey, M. T., Caesar, L. K., Drott, M. T., Keller, N. P. & Kelleher, N. L. An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes. Proc. Natl Acad. Sci. USA 118, e2020230118 (2021). Comprehensive characterization of the biosynthetic potential of fungi to produce natural products.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ekanayaka, A. H. et al. A review of the fungi that degrade plastic. J. Fungi 8, 772 (2022).

    Article  CAS  MATH  Google Scholar 

  26. Schmidt, B. et al. Mechanical, physical and thermal properties of composite materials produced with the basidiomycete Fomes fomentarius. Fungal Biol. Biotechnol. 10, 22 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  27. Cordero, R. J. B. & Casadevall, A. Functions of fungal melanin beyond virulence. Fungal Biol. Rev. 31, 99–112 (2017).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  28. Dadachova, E. et al. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE 2, e457 (2007).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  29. Berbee, M. L., James, T. Y. & Strullu-Derrien, C. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu. Rev. Microbiol. 71, 41–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Amend, A. et al. Fungi in the marine environment: open questions and unsolved problems. mBio 10, e01189-18 (2019).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  31. Geiser, D. M., Taylor, J. W., Ritchie, K. B. & Smith, G. W. Cause of sea fan death in the West Indies. Nature 394, 137–138 (1998).

    Article  ADS  CAS  MATH  Google Scholar 

  32. Rosenberg, J. F. et al. Cryptococcus gattii type VGIIa infection in harbor seals (Phoca vitulina) in British Columbia, Canada. J. Wildl. Dis. 52, 677–681 (2016).

    Article  PubMed  Google Scholar 

  33. Harris, H. S. et al. Novel presentation of coccidioidomycosis with myriad free-floating proteinaceous spheres in the pericardial sac of a southern sea otter (Enhydra lutris nereis). J. Wildl. Dis. 60, 223–228 (2024).

    Article  PubMed  Google Scholar 

  34. Vilela, R. & Mendoza, L. in Emerging and Epizootic Fungal Infections in Animals (eds. Seyedmousavi, S. et al.) 177–196 (Springer, 2018).

  35. Schmidt, S., Kildgaard, S., Guo, H., Beemelmanns, C. & Poulsen, M. The chemical ecology of the fungus-farming termite symbiosis. Nat. Prod. Rep. 39, 231–248 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Currie, C. R., Poulsen, M., Mendenhall, J., Boomsma, J. J. & Billen, J. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311, 81–83 (2006). The authors discover modifications in fungus-growing ants for maintaining bacterial symbionts that produce antimicrobials to suppress fungal pathogens, illustrating the complexity of fungus–insect interactions.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Boyce, G. R. et al. Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens. Fungal Ecol. 41, 147–164 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).

    Article  MATH  Google Scholar 

  39. Kandasamy, D. et al. Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PLoS Biol. 21, e3001887 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019). Analysis showing the extent to which the amphibian chytridiomycosis panzootic has caused the greatest recorded loss of biodiversity attributable to a disease.

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  41. Hoyt, J. R., Kilpatrick, A. M. & Langwig, K. E. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 19, 196–210 (2021). Summarizes the origin and introduction of Pseudogymnoascus destructans, the fungal pathogen that causes bat white-nose syndrome, to North America and describes the impacts and epidemiology of this devastating wildlife disease.

    Article  CAS  PubMed  Google Scholar 

  42. Coker, T. L. R. et al. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 1, 48–58 (2019).

    Article  MATH  Google Scholar 

  43. O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018). Genomic analysis identifying the centre of origin and dating the worldwide expansion of the amphibian chytridiomycosis panzootic.

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  44. Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl Acad. Sci. USA 110, 15325–15329 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  45. Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  46. McMullan, M. et al. The ash dieback invasion of Europe was founded by two genetically divergent individuals. Nat. Ecol. Evol. 2, 1000–1008 (2018).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  47. Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Springborn, M. R., Weill, J. A., Lips, K. R., Ibáñez, R. & Ghosh, A. Amphibian collapses increased malaria incidence in Central America. Environ. Res. Lett. 17, 104012 (2022).

    Article  ADS  Google Scholar 

  49. Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).

    Article  ADS  PubMed  Google Scholar 

  50. Hill, L. et al. The £15 billion cost of ash dieback in Britain. Curr. Biol. 29, R315–R316 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  51. Taylor, J. W. & Barker, B. M. The endozoan, small-mammal reservoir hypothesis and the life cycle of Coccidioides species. Med. Mycol. 57, S16–S20 (2019).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  52. Gorris, M. E., Neumann, J. E., Kinney, P. L., Sheahan, M. & Sarofim, M. C. Economic valuation of coccidioidomycosis (valley fever) projections in the United States in response to climate change. Weather Clim. Soc. 13, 107–123 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Gorris, M. E., Treseder, K. K., Zender, C. S. & Randerson, J. T. Expansion of coccidioidomycosis endemic regions in the United States in response to climate change. GeoHealth 3, 308–327 (2019).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  54. Rocke, T. E. et al. Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Sci. Rep. 9, 6788 (2019).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  55. Isidoro-Ayza, M. & Klein, B. S. Pathogenic strategies of Pseudogymnoascus destructans during torpor and arousal of hibernating bats. Science 385, 194–200 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Waddle, A. W. et al. Hotspot shelters stimulate frog resistance to chytridiomycosis. Nature 631, 344–349 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Heiniger, U. & Rigling, D. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 32, 581–599 (1994).

    Article  MATH  Google Scholar 

  58. Zhang, H. et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement. Mol. Plant 13, 1420–1433 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  59. Thapa, V., Keller, N. P. & Roossinck, M. J. Evaluation of virus-free and wild-type isolates of Pseudogymnoascus destructans using a porcine ear model. mSphere 7, P1420–P1433 (2022).

    Article  Google Scholar 

  60. Clemons, R. A. et al. An endogenous DNA virus in an amphibian-killing fungus associated with pathogen genotype and virulence. Curr. Biol. 34, 1469–1478 (2024).

    Article  CAS  PubMed  MATH  Google Scholar 

  61. Feijen, F. A. A., Vos, R. A., Nuytinck, J. & Merckx, V. S. F. T. Evolutionary dynamics of mycorrhizal symbiosis in land plant diversification. Sci. Rep. 8, 10698 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  63. Allsup, C. M., George, I. & Lankau, R. A. Shifting microbial communities can enhance tree tolerance to changing climates. Science 380, 835–840 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Hawkes, C. V., Allen, X., Balint-Kurti, P. & Cowger, C. Manipulating the plant mycobiome to enhance resilience: Ecological and evolutionary opportunities and challenges. PLoS Pathog. 19, e1011816 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chitnis, V. R. et al. Fungal endophyte-mediated crop improvement: the way ahead. Front. Plant Sci. 11, 561007 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Morales-Vargas, A. T., López-Ramírez, V., Álvarez-Mejía, C. & Vázquez-Martínez, J. Endophytic fungi for crops adaptation to abiotic stresses. Microorganisms 12, 1357 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gowtham, H. G. et al. Fungal endophytes as mitigators against biotic and abiotic stresses in crop plants. J. Fungi 10, 116 (2024).

    Article  CAS  MATH  Google Scholar 

  68. Hawkins, H. J. et al. Mycorrhizal mycelium as a global carbon pool. Curr. Biol. 33, R560–R573 (2023). The first global quantification of carbon allocation from plants to mycorrhizal fungi estimates that 13.12 Gt of CO2 emissions fixed by terrestrial plants is, at least temporarily, allocated to the underground mycelium of mycorrhizal fungi per year, equating to around 36% of current annual CO2 emissions from fossil fuels.

    Article  PubMed  MATH  Google Scholar 

  69. Lilleskov, E. A., Kuyper, T. W., Bidartondo, M. I. & Hobbie, E. A. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ. Pollut. 246, 148–162 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  70. Stukenbrock, E. H. et al. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res. 21, 2157–2166 (2011).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  71. Sotiropoulos, A. G. et al. Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat. Commun. 13, 4315 (2022). This study traced the historical spread of wheat powdery mildew, revealing the role of human migration as well as rapid evolution through hybridization.

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  72. Fones, H. N. et al. Threats to global food security from emerging fungal and oomycete crop pathogens. Nat. Food 1, 332–342 (2020).

    Article  PubMed  Google Scholar 

  73. Sharma, R. R., Singh, D. & Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control 50, 205–221 (2009).

    Article  MATH  Google Scholar 

  74. Singh, R. P. et al. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105, 872–884 (2015).

    Article  PubMed  MATH  Google Scholar 

  75. Grandaubert, J., Dutheil, J. Y. & Stukenbrock, E. H. The genomic determinants of adaptive evolution in a fungal pathogen. Evol. Lett. 3, 299–312 (2019).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  76. Islam, M. T. et al. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 14, 84 (2016).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  77. Eskola, M. et al. Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ‘FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr. 60, 2773–2789 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  78. Liew, W. P. P. & Mohd-Redzwan, S. Mycotoxin: its impact on gut health and microbiota. Front. Cell. Infect. Microbiol. 8, 60 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Johns, L. E., Bebber, D. P., Gurr, S. J. & Brown, N. A. Emerging health threat and cost of Fusarium mycotoxins in European wheat. Nat. Food 3, 1014–1019 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  80. Sun, Y., Song, Y., Long, M. & Yang, S. Immunotoxicity of three environmental mycotoxins and their risks of increasing pathogen infections. Toxins 15, 187 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  81. Wang, Y., Pruitt, R. N., Nürnberger, T. & Wang, Y. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 20, 449–464 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  82. Weiberg, A. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342, 118–123 (2013). This study discovered the mechanism of cross-kingdom RNA interference (RNAi), in which small RNAs from a fungal pathogen are transported into plant hosts and use the plant RNAi machinery to silence plant immunity genes.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, B., Sen, Li,Y. C., Guo, H. S. & Zhao, J. H. Verticillium dahliae secretes small RNA to target host MIR157d and retard plant floral transition during infection. Front. Plant Sci. 13, 847086 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cai, Q. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360, 1126–1129 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  85. Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021).

    Article  ADS  Google Scholar 

  86. Oliver, R. P. & Hewitt, H. G. Fungicides in Crop Protection (CABI, 2014).

  87. Steinberg, G. et al. A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nat. Commun. 11, 1608 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  88. Van Den Bosch, F., Paveley, N., Van Den Berg, F., Hobbelen, P. & Oliver, R. Mixtures as a fungicide resistance management tactic. Phytopathology 104, 1264–1273 (2014).

    Article  PubMed  MATH  Google Scholar 

  89. Ludwig, N. et al. A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis. Nat. Microbiol. 6, 722–730 (2021). This study describes a complex of seven Ustilago maydis proteins likely to be involved in effector delivery to the host.

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  90. Niu, D. et al. RNAs—a new frontier in crop protection. Curr. Opin. Biotechnol. 70, 204–212 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  91. Cai, Q. et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles. Annu. Rev. Plant Biol. 72, 497–524 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  92. Qiao, L. et al. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection. Plant Biotechnol. J. 21, 854–865 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  93. Luo, M. et al. A five-transgene cassette confers broad-spectrum resistance to a fungal rust pathogen in wheat. Nat. Biotechnol. 39, 561–566 (2021).

    Article  CAS  PubMed  MATH  Google Scholar 

  94. Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A. & Kamoun, S. NLR immune receptor-nanobody fusions confer plant disease resistance. Science 379, 934–939 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).

    Article  PubMed  Google Scholar 

  96. World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action (WHO, 2022).

  97. Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  98. Hoenigl, M. et al. COVID-19-associated fungal infections. Nat. Microbiol. 7, 1127–1140 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  99. Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  100. Leonardi, I. et al. Mucosal fungi promote gut barrier function and social behavior via type 17 immunity. Cell 185, 831–846 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  101. Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  102. Martini, G. R. et al. Selection of cross-reactive T cells by commensal and food-derived yeasts drives cytotoxic TH1 cell responses in Crohn’s disease. Nat. Med. 29, 2602–2614 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  103. Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355 (2019). This study showed that intestinal Candida albicans is the most common inducer of TH17 responses in the gut of humans, and that these cells are cross-reactive to Aspergillus in the airway causing inflammation. This is suggestive of a gut-to-lung axis in which TH17 immune protective responses in the gut can exacerbate pathological inflammation in the lung.

    Article  CAS  PubMed  MATH  Google Scholar 

  104. Shao, T. Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bradford, L. L. & Ravel, J. The vaginal mycobiome: a contemporary perspective on fungi in women’s health and diseases. Virulence 8, 342–351 (2017).

    Article  PubMed  MATH  Google Scholar 

  106. Wu, G. et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet. 11, e1005614 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Findley, K. et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367–370 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  108. Sparber, F. et al. The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host Microbe 25, 389–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Hernández-Santos, N. et al. Lung epithelial cells coordinate innate lymphocytes and immunity against pulmonary fungal infection. Cell Host Microbe 23, 511–522 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Conti, H. R. et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe 20, 606–617 (2016).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  111. Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Doron, I. et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat. Microbiol. 6, 1493–1504 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  113. Doron, I. et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell 184, 1017–1031 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  114. Liang, S. H. et al. The hyphal-specific toxin candidalysin promotes fungal gut commensalism. Nature 627, 620–627 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  115. Rhodes, J. et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat. Microbiol. 7, 663–674 (2022). Genomic analysis revealing the infection of patients with antifungal resistant isolates acquired from environment exposures.

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  116. Jacobs, S. E., Zagaliotis, P. & Walsh, T. J. Novel antifungal agents in clinical trials. F1000Research 10, 507 (2021).

    Article  CAS  PubMed  MATH  Google Scholar 

  117. Maji, A. et al. Tuning sterol extraction kinetics yields a renal-sparing polyene antifungal. Nature 623, 1079–1085 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  118. van Rhijn, N. et al. Aspergillus fumigatus strains that evolve resistance to the agrochemical fungicide ipflufenoquin in vitro are also resistant to olorofim. Nat. Microbiol. 9, 29–34 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oliveira, L. V. N., Wang, R., Specht, C. A. & Levitz, S. M. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines 6, 33 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rayens, E. et al. Immunogenicity and protective efficacy of a pan-fungal vaccine in preclinical models of aspergillosis, candidiasis, and pneumocystosis. PNAS Nexus 1, pgac248 (2022).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  122. Lockhart, S. R., Chowdhary, A. & Gold, J. A. W. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat. Rev. Microbiol. 21, 818–832 (2023). This study describes the global population structure of Candida auris and defines the four major clades that arose contemporaneously, revealing the low diversity of isolates within each clade and high diversity between clades. This led to many hypotheses about what could have led to the rapid emergence of this pathogen with its complex population structure.

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  123. Duong, T. M. N. et al. Azole-resistant Aspergillus fumigatus is highly prevalent in the environment of Vietnam, with marked variability by land use type. Environ. Microbiol. 23, 7632–7642 (2021).

    Article  CAS  PubMed  MATH  Google Scholar 

  124. Chow, N. A. et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 11, e03364-19 (2020).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  125. Arora, P. et al. Environmental isolation of Candida auris from the coastal wetlands of Andaman Islands, India. mBio 12, e03181-20 (2021).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  126. Yadav, A. et al. Candida auris on apples: diversity and clinical significance. mBio 13, e0051822 (2022).

    Article  PubMed  Google Scholar 

  127. Rybak, J. M. et al. Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris. mBio 11, e00365-20 (2020).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  128. Lockhart, S. R. et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 64, 134–140 (2017).

    Article  CAS  PubMed  MATH  Google Scholar 

  129. Casadevall, A., Kontoyiannis, D. P. & Robert, V. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10, e01397-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jackson, B. R. et al. On the origins of a species: what might explain the rise of Candida auris? J. Fungi 5, 58 (2019).

    Article  MATH  Google Scholar 

  131. Uhrlaß, S. et al. Trichophyton indotineae—an emerging pathogen causing recalcitrant dermatophytoses in India and worldwide—a multidimensional perspective. J. Fungi 8, 757 (2022). Summary of the characteristics of a rapidly emerging epidemic fungus in India, Trichophyton indotineae, that causes a skin-to-skin transmission affecting the groin, body and face. T. indotineae is resistant to terbinafine, which is normally the antifungal of choice for dermatophyte fungi.

    Article  Google Scholar 

  132. Etchecopaz, A. et al. Sporothrix brasiliensis: a review of an emerging South American fungal pathogen, its related disease, presentation and spread in Argentina. J. Fungi 7, 170 (2021).

    Article  CAS  Google Scholar 

  133. Barnacle, J. R. et al. The first three reported cases of Sporothrix brasiliensis cat-transmitted sporotrichosis outside South America. Med. Mycol. Case Rep. 39, 14–17 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Yadav, A. et al. Candida auris in dog ears. J. Fungi 9, 720 (2023).

    Article  CAS  MATH  Google Scholar 

  135. White, T. C. et al. Candida auris detected in the oral cavity of a dog in Kansas. mBio 15, e0308023 (2024).

    Article  PubMed  Google Scholar 

  136. Huang, J. et al. Pan-drug resistance and hypervirulence in a human fungal pathogen are enabled by mutagenesis induced by mammalian body temperature. Nat. Microbiol. 9, 1686–1699 (2024).

    Article  CAS  PubMed  MATH  Google Scholar 

  137. Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  138. Jahn, L. J., Rekdal, V. M. & Sommer, M. O. A. Microbial foods for improving human and planetary health. Cell 186, 469–478 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  139. Behera, B. C. Citric acid from Aspergillus niger: a comprehensive overview. Crit. Rev. Microbiol. 46, 727–749 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  140. Fraser, R. Z., Shitut, M., Agrawal, P., Mendes, O. & Klapholz, S. Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. Int. J. Toxicol. 37, 241–262 (2018). This study revealed no evidence for toxicity for the haem cofactor from plant leghaemoglobin that confers meat-like flavours upon cooking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, J. et al. Molecular mechanisms of nematode–nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 53, 67–95 (2015).

    Article  CAS  PubMed  MATH  Google Scholar 

  142. Yang, X. et al. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. mBio 9, e01211-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sanchez, S. & Demain, A. L. in Food Bioactives (ed. Puri, M.) 59–87 (Springer, 2017).

  144. Nutt, D., Spriggs, M. & Erritzoe, D. Psychedelics therapeutics: what we know, what we think, and what we need to research. Neuropharmacology 223, 109257 (2023).

    Article  CAS  PubMed  Google Scholar 

  145. Lark, T. J. et al. Environmental outcomes of the US Renewable Fuel Standard. Proc. Natl Acad. Sci. USA 119, e2101084119 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  146. Huq, N. A. et al. Toward net-zero sustainable aviation fuel with wet waste-derived volatile fatty acids. Proc. Natl Acad. Sci. USA 118, e2023008118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Harms, H., Schlosser, D. & Wick, L. Y. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat. Rev. Microbiol. 9, 177–192 (2011).

    Article  CAS  PubMed  MATH  Google Scholar 

  148. Vandelook, S., Elsacker, E., Van Wylick, A., De Laet, L. & Peeters, E. Current state and future prospects of pure mycelium materials. Fungal Biol. Biotechnol. 8, 20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Cordero, R. J. B., Mattoon, E. R., Ramos, Z. & Casadevall, A. The hypothermic nature of fungi. Proc. Natl Acad. Sci. USA 120, e2221996120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

N.T.C. is supported by a Canadian Institutes for Health Research (CIHR) Canada Graduate Scholarships Doctoral Award. A. Casadevall was supported by National Institutes of Health (NIH) grants AI052733-16, AI152078-01 and HL059842-19. C.R.C. was supported by the Jarislowsky Foundation. L.K.F.-L., T.Y.J. and J.E.S. are supported by the Gordon and Betty Moore Foundation award 9337 (10.37807/GBMF9337). A.G. is supported by an NIH–NIAID K99 grant 1K99AI166094-01. I.D.I. is supported by NIH grants DK113136, DK121977 and AI163007. H.J. was supported by grants from the NIH (R35GM136379), National Science Foundation (NSF) (IOS 2020731), US Department of Agriculture (2021-67013-34258) and Australian Research Council Research Hub for Sustainable Crop Protection (IH190100022). B.S.K. is supported by grants R01 AI168370, R37 AI035681, R01 AI040996, U01 AI124299, NSF 2301729, T32 AI055397 and BAA-NIAID-DAIT-AI201800007. R.S.S. is supported by a Tier II Canada Research Chair. K.G.P. is supported by NSF DEB 1845544 and DOE BER DE-SC0023661. J.E.S. was supported by NSF grant EF-2125066, NIH–NIAID grants AI127548 AI130128 and US Department of Agriculture, National Institute of Food and Agriculture Hatch Projects CA-R-PPA-211-5062-H. L.E.C. is a Canada Research Chair (Tier 1) in Microbial Genomics and Infectious Disease and is supported by a CIHR Foundation grant (FDN-154288) and NIH grants R01 AI127375, R01 AI162789 and R01AI165466. J.H. is supported by NIH grants R01 AI039115, R01 AI050113, R01 AI170543, R01 AI172451, R01 AI133654 and R21 AI168672. J.A.S. is supported by the Intramural Research Program of the National Human Genome Research Institute. I.V.E., A.C.G., A.G., K.S.O., R.S.S. and N.S. are CIFAR Azrieli Global Scholars of the CIFAR Fungal Kingdom: Threats & Opportunities program. S.J.G., M.C.F., D.S.B., C.B., A. Chowdhary, C.A.C., C.R.C., L.K.F.-L., I.D.I., T.Y.J., H.J., B.S.K., J.W.K., K.G.P., D.C.S., J.E.S., E.H.S., G.D.W. and J.A.S. are Fellows of the CIFAR Fungal Kingdom: Threats & Opportunities program. A. Casadevall, D.W.D., N.A.R.G., R.K. and J.W.T. are advisors of the CIFAR Fungal Kingdom: Threats & Opportunities program. J.H. and L.E.C. are co-directors of the CIFAR Fungal Kingdom: Threats & Opportunities program. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Contributions

N.T.C., S.J.G., M.C.F., D.S.B., C.B., A. Casadevall, A. Chowdhary, C.A.C., C.R.C., D.W.D., I.V.E., L.K.F.-L., A.C.G., N.A.R.G., A.G., I.D.I., T.Y.J., H.J., R.K., B.S.K., J.W.K., K.S.O., K.G.P., R.S.S., D.C.S., N.S., J.E.S., E.H.S., J.W.T., G.D.W., L.E.C., J.H. and J.A.S. conceived, drafted and revised this work. I.V.E., A.C.G., A.G., K.S.O., R.S.S. and N.S. conceptualized and drafted the figures.

Corresponding authors

Correspondence to Leah E. Cowen, Joseph Heitman or Julia A. Segre.

Ethics declarations

Competing interests

D.W.D. and family hold founder shares in F2G, a University of Manchester spin-out antifungal discovery company, and share options in TFF Pharma. D.W.D. acts or has recently acted as a consultant to Pulmatrix, Pulmocide, Biosergen, TFF Pharmaceuticals, Pfizer, Omega, Novacyt, Rostra Therapeutics, MucPharm, Mundipharma, Lifemine and Cipla; chairs a Data Review Committee for Pulmocide; and acts as a Phase 1 Medical Monitor for Biosergen. In the past three years, D.W.D. has been paid for talks on behalf of BioRad, Basilea and Pfizer. J.E.S. is a paid consultant for Zymergen, Sincarne and Michroma. L.E.C. is a co-founder of and shareholder in Bright Angel Therapeutics, a platform company for the development of novel antifungal therapeutics, and a Science Advisor for Kapoose Creek, a company that harnesses the therapeutic potential of fungi.

Peer review

Peer review information

Nature thanks Bernhard Hube and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Case, N.T., Gurr, S.J., Fisher, M.C. et al. Fungal impacts on Earth’s ecosystems. Nature 638, 49–57 (2025). https://doi.org/10.1038/s41586-024-08419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08419-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing