Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogen escaping from a pair of exoplanets smaller than Neptune

Abstract

Exoplanet surveys have shown a class of abundant exoplanets smaller than Neptune on close, <100-day orbits1,2,3,4. These planets form two populations separated by a natural division at about 1.8 R termed the radius valley. It is uncertain whether these populations arose from separate dry versus water-rich formation channels, evolved apart because of long-term atmospheric loss or a combination of both5,6,7,8,9,10,11,12,13,14. Here we report observations of ongoing hydrogen loss from two sibling planets, TOI-776 b (1.85 ± 0.13 R) and TOI-776 c (2.02 ± 0.14 R), the sizes of which near the radius valley and mature (1–4 Gyr) age make them valuable for investigating the origins of the divided population of which they are a part. During the transits of these planets, absorption appeared against the Lyman-α emission of the host star, compatible with hydrogen escape at rates equivalent to 0.03–0.6% and 0.1–0.9% of the total mass per billion years of each planet, respectively. Observations of the outer planet, TOI-776 c, are incompatible with an outflow of dissociated steam, suggesting both it and its inner sibling formed in a dry environment. These observations support the strong role of hydrogen loss in the evolution of close-orbiting sub-Neptunes5,6,7,8,15,16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lyman-α transit lightcurves.
Fig. 2: Mass loss constraints.
Fig. 3: Atmospheric evolution of TOI-776 b and c.

Similar content being viewed by others

Data availability

The datasets analysed during this study are publicly available in the Mikulski Archive for Space Telescopes at https://doi.org/10.17909/a8jb-3759.

Code availability

The Space Telescope Environment for Python and stistools package used to process the STIS data are publicly available at https://stistools.readthedocs.io/en/latest. Code for data reduction and analysis and for generating all figures and values except those relating to the evolutionary tracks is available on Zenodo at https://doi.org/10.5281/zenodo.13976674 (ref. 84). The outflow model code is publicly available at https://github.com/eschreyer/LyA_code. The code used to generate evolutionary tracks is available at https://github.com/jo276/EvapMass, along with the efficiency interpolator as part of the main code package, and chains from the most recent run are present in the Zenodo archive. A beta release of the RHD code is available at https://github.com/mibroome/wind-ae/.

References

  1. Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012).

    ADS  MATH  Google Scholar 

  2. Dong, S. & Zhu, Z. Fast rise of “Neptune-size” planets (4–8 R) from P 10 to 250 days—statistics of Kepler planet candidates up to 0.75 AU. Astrophys. J. 778, 53 (2013).

    ADS  Google Scholar 

  3. Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    ADS  Google Scholar 

  4. Kunimoto, M., Winn, J., Ricker, G. R. & Vanderspek, R. K. Predicting the exoplanet yield of the TESS Prime and extended missions through years 1–7. Astrophys. J. 163, 290 (2022).

    Google Scholar 

  5. Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).

    ADS  MATH  Google Scholar 

  6. Lopez, E. D. & Fortney, J. J. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013).

    ADS  MATH  Google Scholar 

  7. Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).

    ADS  CAS  MATH  Google Scholar 

  8. Gupta, A. & Schlichting, H. E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 487, 24–33 (2019).

    ADS  PubMed  PubMed Central  MATH  Google Scholar 

  9. Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  10. Lee, E. J. & Connors, N. J. Primordial radius gap and potentially broad core mass distributions of super-Earths and sub-Neptunes. Astrophys. J. 908, 32 (2021).

    ADS  CAS  MATH  Google Scholar 

  11. Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, e2020JE006639 (2021).

    ADS  PubMed  PubMed Central  Google Scholar 

  12. Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

    ADS  CAS  PubMed  Google Scholar 

  13. Rogers, J. G., Schlichting, H. E. & Owen, J. E. Conclusive evidence for a population of water worlds around M dwarfs remains elusive. Astrophys. J. Lett. 947, 19 (2023).

  14. Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores. Nat. Astron. 8, 463–471 (2024).

  15. Lecavelier des Etangs, A. A diagram to determine the evaporation status of extrasolar planets. Astron. Astrophys. 461, 1185–1193 (2007).

    ADS  CAS  MATH  Google Scholar 

  16. Owen, J. E. & Jackson, A. P. Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931–2947 (2012).

    ADS  MATH  Google Scholar 

  17. Luque, R. et al. A planetary system with two transiting mini-Neptunes near the radius valley transition around the bright M dwarf TOI-776. Astron. Astrophys. 645, A41 (2021).

    CAS  MATH  Google Scholar 

  18. Cloutier, R. & Menou, K. Evolution of the radius valley around low-mass stars from Kepler and K2. Astron. J. 159, 211 (2020).

    ADS  MATH  Google Scholar 

  19. Angus, R. et al. Exploring the evolution of stellar rotation using galactic kinematics. Astron. J. 160, 90 (2020).

    ADS  MATH  Google Scholar 

  20. Engle, S. G. & Guinan, E. F. Living with a red dwarf: the rotation-age relationship of M dwarfs. Astrophys. J. Lett. 954, 50 (2023).

  21. Lu, Y., Angus, R., Foreman-Mackey, D. & Hattori, S. In this day and age: an empirical gyrochronology relation for partially and fully convective single field stars. Astron. J. 167, 159 (2024).

  22. Schreyer, E., Owen, J. E., Loyd, R. O. P. & Murray-Clay, R. Using Lyman-α transits to constrain models of atmospheric escape. Mon. Not. R. Astron. Soc. 533, 3296–3311 (2024).

  23. Owen, J. E. & Adams, F. C. Effects of magnetic fields on the ___location of the evaporation valley for low-mass exoplanets. Mon. Not. R. Astron. Soc. 490, 15–20 (2019).

    ADS  CAS  MATH  Google Scholar 

  24. Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).

    ADS  CAS  PubMed  Google Scholar 

  25. Bourrier, V. & Lecavelier des Etangs, A. 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions. Astron. Astrophys. 557, A124 (2013).

    ADS  MATH  Google Scholar 

  26. Kislyakova, K. G. et al. Transit Lyman-α signatures of terrestrial planets in the habitable zones of M dwarfs. Astron. Astrophys. 623, A131 (2019).

    CAS  MATH  Google Scholar 

  27. Bourrier, V. et al. Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astron. Astrophys. 620, A147 (2018).

    CAS  MATH  Google Scholar 

  28. Zhang, M. et al. Detection of ongoing mass loss from HD 63433c, a young mini-Neptune. Astron. J 163, 68 (2022).

    ADS  CAS  MATH  Google Scholar 

  29. Zhang, M. et al. Detection of atmospheric escape from four young mini-Neptunes. Astron. J 165, 62 (2023).

    ADS  MATH  Google Scholar 

  30. Zhang, M., Dai, F., Bean, J. L., Knutson, H. A. & Rescigno, F. Outflowing helium from a mature mini-Neptune. Astrophys. J. Lett. 953, 25 (2023).

  31. Zahnle, K. J. & Kasting, J. F. Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986).

    ADS  CAS  MATH  Google Scholar 

  32. Hunten, D. M., Pepin, R. O. & Walker, J. C. G. Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987).

    ADS  CAS  MATH  Google Scholar 

  33. Murray-Clay, R. A., Chiang, E. I., & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009).

    ADS  CAS  MATH  Google Scholar 

  34. García Muñoz, A. et al. A heavy molecular weight atmosphere for the super-Earth π Men c. Astrophys. J. 907, L36 (2021).

    ADS  MATH  Google Scholar 

  35. Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “steam world” atmosphere of GJ 9827 d. Astrophys. J. 974, L10 (2024).

    CAS  MATH  Google Scholar 

  36. Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).

    ADS  Google Scholar 

  37. Rogers, J. G., Gupta, A., Owen, J. E. & Schlichting, H. E. Photoevaporation versus core-powered mass-loss: model comparison with the 3D radius gap. Mon. Not. R. Astron. Soc. 508, 5886 (2021).

    ADS  CAS  MATH  Google Scholar 

  38. Sohn, T. S. STIS Data Handbook v.7 (STScI, 2019).

  39. Medallon, S. & Welty, D. STIS Instrument Handbook for Cycle 31 v.22.0 (STScI, 2023).

  40. Bohlin, R. & Hartig, G. Clear aperture fractional transmission for point sources. STIS Instrum. Sci. Rep. 98, 20 (1998).

    MATH  Google Scholar 

  41. Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015).

    ADS  CAS  PubMed  MATH  Google Scholar 

  42. Lecavelier des Etangs, A. et al. Evaporation of the planet HD 189733b observed in H I Lyman-α. Astron. Astrophys. 514, A72 (2010).

    MATH  Google Scholar 

  43. Kulow, J. R., France, K., Linsky, J. & Parke Loyd, R. O. LYα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786, 132 (2014).

    ADS  Google Scholar 

  44. Ben-Jaffel, L. et al. Signatures of strong magnetization and a metal-poor atmosphere for a Neptune-sized exoplanet. Nat Astron 6, 141–153 (2022).

    ADS  Google Scholar 

  45. Liddle, A. R. Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 377, L74–L78 (2007).

    ADS  MATH  Google Scholar 

  46. Wilson, D. J. et al. Testing Lyα emission-line reconstruction routines at multiple velocities in one system. Astrophys. J. 936, 189 (2022).

    ADS  MATH  Google Scholar 

  47. Karamanis, M., Beutler, F. & Peacock, J. A. zeus: a PYTHON implementation of ensemble slice sampling for efficient Bayesian parameter inference. Mon. Not. R. Astron. Soc. 508, 3589–3603 (2021).

    ADS  CAS  MATH  Google Scholar 

  48. Karamanis, M. & Beutler, F. Ensemble slice sampling. Stat. Comput. 31, 61 (2021).

    MathSciNet  MATH  Google Scholar 

  49. Linsky, J. L., Fontenla, J. & France, K. The intrinsic extreme ultraviolet fluxes of F5 V to M5 V stars. Astrophys. J. 780, 61 (2014).

    ADS  MATH  Google Scholar 

  50. Duvvuri, G. M. et al. Reconstructing the extreme ultraviolet emission of cool dwarfs using differential emission measure polynomials. Astrophys. J. 913, 40 (2021).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  51. Feinstein, A. D. et al. AU Microscopii in the far-UV: observations in quiescence, during flares, and implications for AU Mic b and c. Astron. J 164, 110 (2022).

    ADS  CAS  MATH  Google Scholar 

  52. Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149–173 (1997).

    ADS  CAS  Google Scholar 

  53. del Zanna, G. & Young, P. R. Atomic data for plasma spectroscopy: the CHIANTI database, improvements and challenges. Atoms 8, 46 (2020).

    ADS  MATH  Google Scholar 

  54. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS  MATH  Google Scholar 

  55. Peacock, S. et al. Predicting the extreme ultraviolet radiation environment of exoplanets around low-mass stars: GJ 832, GJ 176, and GJ 436. Astrophys. J. 886, 77 (2019).

    ADS  CAS  MATH  Google Scholar 

  56. Peacock, S. et al. HAZMAT VI: the evolution of extreme ultraviolet radiation emitted from early M stars. Astrophys. J. 895, 5 (2020).

    ADS  CAS  MATH  Google Scholar 

  57. Tilipman, D., Vieytes, M., Linsky, J. L., Buccino, A. P. & France, K. Semiempirical modeling of the atmospheres of the M dwarf exoplanet hosts GJ 832 and GJ 581. Astrophys. J. 909, 61 (2021).

    ADS  CAS  Google Scholar 

  58. Johnstone, C. P., Bartel, M. & Güdel, M. The active lives of stars: a complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. Astron. Astrophys. 649, A96 (2021).

    ADS  CAS  MATH  Google Scholar 

  59. Drake, J. J. et al. NExtUP: the normal-incidence extreme ultraviolet photometer. Proc. SPIE 11821, 1182108 (2021).

  60. France, K. et al. Extreme-ultraviolet stellar characterization for atmospheric physics and evolution mission: motivation and overview. J. Astron. Telesc. Instrum. Syst. 8, 014006 (2022).

    ADS  MATH  Google Scholar 

  61. Llama, J. & Shkolnik, E. L. Transiting the Sun. II. The impact of stellar activity on Lyα transits. Astrophys. J. 817, 81 (2016).

    ADS  MATH  Google Scholar 

  62. Linssen, D. & Oklopčić, A. Expanding the inventory of spectral lines used to trace atmospheric escape in exoplanets. Astron. Astrophys. 675, 193 (2023).

  63. Avrett, E. H. & Loeser, R. Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. Ser. 175, 229–276 (2008).

    ADS  CAS  MATH  Google Scholar 

  64. Owen, J. E. & Adams, F. C. Magnetically controlled mass-loss from extrasolar planets in close orbits. Mon. Not. R. Astron. Soc. 444, 3761–3779 (2014).

    ADS  CAS  MATH  Google Scholar 

  65. Bisikalo, D. et al. Three-dimensional gas dynamic simulation of the interaction between the exoplanet WASP-12b and its host star. Astrophys. J. 764, 19 (2013).

    ADS  Google Scholar 

  66. Matsakos, T., Uribe, A. & Königl, A. Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. Astron. Astrophys. 578, A6 (2015).

    ADS  MATH  Google Scholar 

  67. Carroll-Nellenback, J. et al. Hot planetary winds near a star: dynamics, wind-wind interactions, and observational signatures. Mon. Not. R. Astron. Soc. 466, 2458–2473 (2017).

    ADS  CAS  MATH  Google Scholar 

  68. Khodachenko, M. L. et al. Global 3D hydrodynamic modeling of in-transit Lyα absorption of GJ 436b. Astrophys. J. 885, 67 (2019).

    ADS  CAS  MATH  Google Scholar 

  69. McCann, J., Murray-Clay, R. A., Kratter, K. & Krumholz, M. R. Morphology of hydrodynamic winds: a study of planetary winds in stellar environments. Astrophys. J. 873, 89 (2019).

    ADS  CAS  Google Scholar 

  70. Debrecht, A. et al. Effects of radiation pressure on the evaporative wind of HD 209458b. Mon. Not. R. Astron. Soc. 493, 1292–1305 (2020).

    ADS  CAS  MATH  Google Scholar 

  71. Carolan, S., Vidotto, A. A., Villarreal D’Angelo, C. & Hazra, G. Effects of the stellar wind on the Ly α transit of close-in planets. Mon. Not. R. Astron. Soc. 500, 3382–3393 (2021).

    ADS  CAS  MATH  Google Scholar 

  72. Hazra, G., Vidotto, A. A., Carolan, S., Villarreal D’Angelo, C. & Manchester, W. The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b. Mon. Not. R. Astron. Soc. 509, 5858–5871 (2022).

    ADS  CAS  Google Scholar 

  73. MacLeod, M. & Oklopčić, A. Stellar wind confinement of evaporating exoplanet atmospheres and its signatures in 1083 nm observations. Astrophys. J. 926, 226 (2022).

    ADS  Google Scholar 

  74. Salz, M., Schneider, P. C., Czesla, S. & Schmitt, J. H. M. M. Energy-limited escape revised: the transition from strong planetary winds to stable thermospheres. Astron. Astrophys. 585, L2 (2016).

    ADS  Google Scholar 

  75. Lavie, B. et al. The long egress of GJ 436b’s giant exosphere. Astron. Astrophys. 605, L7 (2017).

    ADS  MATH  Google Scholar 

  76. Tremblin, P. & Chiang, E. Colliding planetary and stellar winds: charge exchange and transit spectroscopy in neutral hydrogen. Mon. Not. R. Astron. Soc. 428, 2565–2576 (2013).

    ADS  CAS  MATH  Google Scholar 

  77. Debrecht, A. et al. Effects of charge exchange on the evaporative wind of HD 209458b. Mon. Not. R. Astron. Soc. 517, 1724–1736 (2022).

    ADS  CAS  MATH  Google Scholar 

  78. Bourrier, V., Lecavelier des Etangs, A., Ehrenreich, D., Tanaka, Y. A. & Vidotto, A. A. An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b. Astron. Astrophys. 591, A121 (2016).

    ADS  Google Scholar 

  79. Villarreal D’Angelo, C., Vidotto, A. A., Esquivel, A., Hazra, G. & Youngblood, A. GJ 436b and the stellar wind interaction: simulations constraints using Ly α and H α transits. Mon. Not. R. Astron. Soc. 501, 4383–4395 (2021).

    ADS  Google Scholar 

  80. Mason, E. A. & Marrero, T. R. in Advances in Atomic and Molecular Physics Vol. 6 (eds Bates, D. R. & Esterman, I.) 155–232 (Elsevier, 1970).

  81. Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).

    ADS  MATH  Google Scholar 

  82. Rogers, J. G. & Owen, J. E. Unveiling the planet population at birth. Mon. Not. R. Astron. Soc. 503, 1526–1542 (2021).

    ADS  CAS  MATH  Google Scholar 

  83. Valencia, D., Ikoma, M., Guillot, T. & Nettelmann, N. Composition and fate of short-period super-Earths: the case of CoRoT-7b. Astron. Astrophys. 516, A20 (2010).

    ADS  Google Scholar 

  84. Loyd, R. O. Parke. Hydrogen escaping from a pair of exoplanets smaller than Neptune: data analysis code. Zenodo https://doi.org/10.5281/zenodo.13976674 (2024).

  85. Petigura, E. A. et al. The California-Kepler Survey. X. The radius gap as a function of stellar mass, metallicity, and age. Astron. J. 163, 179 (2022).

    ADS  CAS  Google Scholar 

  86. Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    MATH  Google Scholar 

  87. Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    MATH  Google Scholar 

  88. Woods, T. N. et al. Solar EUV Experiment (SEE): mission overview and first results. J. Geophys. Res. Space Phys. 110, A01312 (2005).

    ADS  MATH  Google Scholar 

  89. Youngblood, A. et al. Intrinsic Lyα profiles of high-velocity G, K, and M dwarfs. Astrophys. J. 926, 129 (2022).

    ADS  Google Scholar 

  90. Redfield, S. & Linsky, J. L. The structure of the local interstellar medium. IV. Dynamics, morphology, physical properties, and implications of cloud-cloud interactions. Astrophys. J. 673, 283–314 (2008).

    ADS  CAS  MATH  Google Scholar 

  91. Linsky, J. L. et al. What is the total deuterium abundance in the local galactic disk? Astrophys. J. 647, 1106–1124 (2006).

    ADS  CAS  MATH  Google Scholar 

Download references

Acknowledgements

Contributions by R.O.P.L were supported by NASA through programme HST-GO-16456. Additional support for R.O.P.L., M.I.B. and R.M.-C. was provided through programme HST-GO-16731. These programmes are administered through grants from the Space Telescope Science Institute, which is operated by the Associations of Universities for Research in Astronomy, under NASA contract NAS 5-26555. E.S. and J.E.O. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 853022, PEVAP). J.E.O. is supported by a Royal Society University Research Fellowship. Contributions by S.P. were supported by NASA under award number 80GSFC24M0006. R.M.-C. and E.S. acknowledge support from NASA XRP grant 80NSSC23K0282. This research is based on observations made with the NASA/ESA HST, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS 526555. These observations are associated with programmes 16456 and 16701. We thank R. Burn et al. for sharing detailed results of their formation–evolution model.

Author information

Authors and Affiliations

Authors

Contributions

R.O.P.L. identified targets and planned the observations of HST programme 16456, processed all HST data, reconstructed the Lyman-α profile, estimated the signal significance, wrote scripts to provide fit statistics for the outflow model, created figures and wrote the paper. E.S. conducted outflow modelling, interpreted the origin of the transit signals and drafted the ‘Outflow model’ section. J.E.O. conducted RHD modelling for the paper and the proposal for 16456, provided input to the paper and advised E.S.; J.G.R. modelled evolutionary tracks for the planets, drafted the ‘Evolutionary tracks’ section and provided Fig. 3. M.B. conducted RHD modelling of the planets and drafted the ‘RHD simulations’ section. E.L.S. originated the idea of targeting high radial velocity systems and drafted a first draft of the proposal for programme 16456. E.L.S. and J.T. suggested the observations may have implications for water content. R.O.P.L., J.E.O., R.M.-C., H.E.S., E.S. and J.G.R. jointly interpreted implications for water content and planetary formation and evolution. D.J.W. extracted initial STIS G140L spectra. D.J.W., A.Y., K.F. and J.T. assisted with data analysis and signal verification. S.P. generated the PHOENIX-based XUV reconstruction and drafted the ‘Lyman-α and XUV’ section. H.E.S. advised J.G.R.; G.M.D. reconstructed an XUV spectrum and drafted the ‘Lyman-α and XUV’ section. A.Y. identified targets and planned the observations of HST programme 16701. P.C.S. analysed X-ray data for the DEM XUV reconstruction. S.G. validated TOI-776 b and TOI-776 c as bonafide planets. I.L. measured ultraviolet line fluxes for input to XUV reconstructions. R.O.P.L., J.E.O., R.M.-C., A.C.S., T.B., S.P., S.G. and D.R.A. are members of the proposing team for programme 16456. A.Y., K.F., P.C.S., G.M.D. and D.J.W. are members of the proposing team for programme 16701. J.E.O., E.L.S., P.C.S., J.T., H.E.S., K.F., N.E.B., D.J.W., A.C.S., S.P., M.B., T.B. and D.R.A. provided feedback for the project and the paper.

Corresponding author

Correspondence to R. O. Parke Loyd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Alain Lecavelier Etangs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Reconstructions of the EUV spectrum.

Reconstructions of the intrinsic EUV spectrum of TOI-776 as seen from Earth based on a PHOENIX stellar model (blue), DEM model (orange), and scaling relationship (green)49,50,51,55,56. Values in parentheses following the line labels are the luminosity integrated across the range 100–912 Å in units of 1028 erg s−1.

Extended Data Fig. 2 Demographic ___location of TOI-776 b & c.

Black points with error bars are planets TOI-776 b & c, shown in the context of a well-characterised sample of 1246 planets (grey points) from ref. 85 orbiting hosts with effective temperatures (Teff) ranging from 3500 to 6700 K. Shading indicates the relative density of points.

Extended Data Fig. 3 Transit spectra and lightcurves.

a, Spectra of the Lyman-α line in and out of transit. Unshaded regions indicate integration bands used to create lightcurves shown in Fig. 1 (‘transit’) and Extended Data Fig. 4 (‘reference’). The selection of these regions is explained in Methods: Data. Colours indicating epoch correspond between Fig. 1, this figure, and Extended Data Fig. 3. Line style represents pre-transit (solid) and transit (dashed). The large difference in flux density and line width between the 2022 Dec and earlier observations is an instrument resolution effect. Envelopes around the lines are 1σ uncertainties. b, Lightcurves integrated over the bands shown in a. Filled and open points correspond to solid and dashed lines in a. Lightcurves were fitted with an occulting disk transit to estimate signal significance (solid: best fit, dashed: 68% confidence interval, dotted: 95% confidence interval). Data and curves are normalised by the pre-transit flux from the best fit. c, Background count rates in the integrated band, due primarily to geocoronal airglow, normalised by the mean value for each observation epoch.

Extended Data Fig. 4 Emission line time series.

Lightcurves of integrated line fluxes from all epochs of G140L data. Lyman-α values are normalised to the mean from the first three visits, shown in parenthesis in the rightmost panel in units of 10−15 erg s−1 cm−2. Others are normalised to the global mean, also shown in parenthesis. Dashed grey lines indicate the optical transit of TOI-776 c.

Extended Data Fig. 5 Reference band time series.

a, Lightcurves of Lyman-α flux in the 100–250 km s−1 reference range (grey points) and in the −37–69 km s−1 range (coloured points, offset slightly in time for visual clarity) as a function of HST orbital phase from the 2021 June and 2022 June epochs. b, Lightcurves of Lyman-α flux in the 100–250 km s−1 reference range as a function of linear time. Filled points are from the first exposure and open points are from the second exposure of each epoch. Curves show polynomial fits of order 0, 1, and 2 with associated fit statistics shown in each panel, with emphasis on the zeroth-order fit (flat line) to indicate our choice not to detrend the data. Dashed grey lines denote optical ingress and egress.

Extended Data Fig. 6 Lyman-α profile fit.

a, G140M data for the ISM-absorbed Lyman-α line with 1σ uncertainties (black with shading) compared to the maximum-likelihood model for the ISM-absorbed line and 68% confidence region after passing through the instrument model (orange with shading). Estimated background levels, which are dominated by geocoronal airglow emission near the line, are plotted as well after applying the same flux scaling as applied to the signal (green). b, Maximum-likelihood model of the intrinsic Lyman-α line (blue), ISM absorption (grey), and absorbed line (orange) with 68% confidence regions (shading). The slight offset of the maximum-likelihood model from the 68% confidence region is due to a nearly flat posterior on the ISM column density over 1017–1018 cm−2.

Extended Data Table 1 Properties of the TOI-776 system
Extended Data Table 2 Observing log
Extended Data Table 3 Lyman-α line profile fit parameters
Extended Data Table 4 Outflow model parameters

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loyd, R.O.P., Schreyer, E., Owen, J.E. et al. Hydrogen escaping from a pair of exoplanets smaller than Neptune. Nature 638, 636–639 (2025). https://doi.org/10.1038/s41586-024-08490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08490-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing