Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Natively expressed AcrIII-1 does not function as an anti-CRISPR protein

The Original Article was published on 16 April 2025

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structure of the AcrIII-1 dimer bound to cA4.

Data availability

All data are taken from previously published articles referenced in the text.

References

  1. Athukoralage, J. S. et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 577, 572–575 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martínez-Alvarez, L. et al. Natively expressed AcrIII-1 does not function as an anti-CRISPR protein. Nature https://doi.org/10.1038/s41586-025-08649-0 (2025).

  3. Jaubert, C. et al. Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon. Open Biol. 3, 130010 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Samolygo, A., Athukoralage, J. S., Graham, S. & White, M. F. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence. Nucl. Acids Res. 48, 6149–6156 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eaglesham, J. B., Pan, Y. D., Kupper, T. S. & Kranzusch, P. J. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS-STING signalling. Nature 566, 259–263 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leavitt, A. et al. Viruses inhibit TIR gcADPR signalling to overcome bacterial defence. Nature 611, 326–331 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Cao, X. et al. Phage anti-CBASS protein simultaneously sequesters cyclic trinucleotides and dinucleotides. Mol. Cell 84, 375–385.e7 (2023).

  8. Athukoralage, J. S. & White, M. F. Cyclic nucleotide signaling in phage defense and counter-defense. Annu. Rev. Virol. 9, 451–468 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Payne, L. J. et al. PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. Nucleic Acids Res. 50, W541–W550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yin, Y., Yang, B. & Entwistle, S. Bioinformatics identification of anti-CRISPR loci by using homology, guilt-by-association, and CRISPR self-targeting spacer approaches. mSystems 4, e00455-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mateus, A. et al. Transcriptional and post-transcriptional polar effects in bacterial gene deletion libraries. mSystems 6, e0081321 (2021).

    Article  PubMed  Google Scholar 

  12. Li, Y. & Bondy-Denomy, J. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe 29, 704–714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, T. et al. Coupling transcriptional activation of CRISPR-Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus. Nucleic Acids Res. 45, 8978–8992 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mukherjee, I. A., Gabel, C., Noinaj, N., Bondy-Denomy, J. & Chang, L. Structural basis of AcrIF24 as an anti-CRISPR protein and transcriptional suppressor. Nat. Chem. Biol. 18, 1417–1424 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, X. et al. Insights into the dual functions of AcrIF14 during the inhibition of type I-F CRISPR–Cas surveillance complex. Nucleic Acids Res. 49, 10178–10191 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prangishvili, D. et al. A novel virus family, the Rudiviridae: structure, virus-host interactions and genome variability of the Sulfolobus viruses SIRV1 and SIRV2. Genetics 152, 1387–1396 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baquero, D. P. et al. New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities. ISME J. 14, 1821–1833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhoobalan-Chitty, Y. et al. Regulatory sequence-based discovery of anti-defense genes in archaeal viruses. Nat. Commun. 15, 3699 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to writing the paper.

Corresponding author

Correspondence to Malcolm F. White.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athukoralage, J.S., McMahon, S.A., Zhang, C. et al. Reply to: Natively expressed AcrIII-1 does not function as an anti-CRISPR protein. Nature 640, E15–E17 (2025). https://doi.org/10.1038/s41586-025-08650-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08650-7

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology