Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of the axion quasiparticle in 2D MnBi2Te4

Abstract

The axion is a hypothetical fundamental particle that is conjectured to correspond to the coherent oscillation of the θ field in quantum chromodynamics1,2. Its existence would solve multiple fundamental questions, including the strong CP problem of quantum chromodynamics and dark matter, but the axion has never been detected. Electrodynamics of condensed-matter systems can also give rise to a similar θ, so far studied as a static, quantized value to characterize the topology of materials3,4,5. Coherent oscillation of θ in condensed matter has been proposed to lead to physics directly analogous to the high-energy axion particle—the dynamical axion quasiparticle (DAQ)6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23. Here we report the observation of the DAQ in MnBi2Te4. By combining a two-dimensional electronic device with ultrafast pump–probe optics, we observe a coherent oscillation of θ at about 44 gigahertz, which is uniquely induced by its out-of-phase antiferromagnetic magnon. This represents direct evidence for the presence of the DAQ, which in two-dimensional MnBi2Te4 is found to arise from the magnon-induced coherent modulation of the Berry curvature. The DAQ also has implications in light–matter interaction and coherent antiferromagnetic spintronics24, as it might lead to axion polaritons and electric control of ultrafast spin polarization6,15,16,17,18,19,20. Finally, the DAQ could be used to detect axion particles21,22,23. We estimate the detection frequency range and sensitivity in the millielectronvolt regime, which has so far been poorly explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Axion particle and quasiparticle and basic information of 2D MnBi2Te4.
Fig. 2: Probing the static magnetoelectric coupling in 2D MnBi2Te4.
Fig. 3: Observation of the dynamical axion quasiparticle in 2D MnBi2Te4.
Fig. 4: Ultrafast control of Berry curvature and dark-matter detection sensitivity.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding author on request. Source data are provided with this paper.

References

  1. Wilczek, F. Problem of strong \({\mathcal{P}}\) and \({\mathcal{P}}\) invariance in the presence of instantons. Phys. Rev. Lett. 40, 279–282 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Weinberg, S. A new light boson? Phys. Rev. Lett. 40, 223–226 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Article  ADS  PubMed  Google Scholar 

  4. Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  5. Mogi, M. et al. Experimental signature of the parity anomaly in a semi-magnetic topological insulator. Nat. Phys. 18, 390–394 (2022).

    Article  CAS  Google Scholar 

  6. Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    Article  CAS  Google Scholar 

  7. Wang, J., Lei, C., MacDonald, A. H. & Binek, C. Dynamic axion field in the magnetoelectric antiferromagnet chromia. Preprint at https://arxiv.org/abs/1901.08536 (2019).

  8. Zhang, J. et al. Large dynamical axion field in topological antiferromagnetic insulator Mn2Bi2Te5. Chin. Phys. Lett. 37, 077304 (2020).

    Article  ADS  CAS  Google Scholar 

  9. Wang, H. et al. Dynamical axion state with hidden pseudospin Chern numbers in MnBi2Te4-based heterostructures. Phys. Rev. B 101, 081109 (2020).

    Article  ADS  CAS  Google Scholar 

  10. Zhu, T., Wang, H., Zhang, H. & Xing, D. Tunable dynamical magnetoelectric effect in antiferromagnetic topological insulator MnBi2Te4 films. npj Comput. Mater. 7, 121 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Røising, H. S. et al. Axion–matter coupling in multiferroics. Phys. Rev. Res. 3, 033236 (2021).

    Article  Google Scholar 

  12. Liu, Z., Xiao, J. & Wang, J. Dynamical magnetoelectric coupling in axion insulator thin films. Phys. Rev. B 105, 214424 (2022).

    Article  ADS  CAS  Google Scholar 

  13. Lhachemi, M. N. Y. & Garate, I. Phononic dynamical axion in magnetic Dirac insulators. Phys. Rev. B 109, 144304 (2024).

    Article  ADS  CAS  Google Scholar 

  14. Shiozaki, K. & Fujimoto, S. Dynamical axion in topological superconductors and superfluids. Phys. Rev. B 89, 054506 (2014).

    Article  ADS  Google Scholar 

  15. Sekine, A. & Nomura, K. Chiral magnetic effect and anomalous Hall effect in antiferromagnetic insulators with spin–orbit coupling. Phys. Rev. Lett. 116, 096401 (2016).

    Article  ADS  PubMed  Google Scholar 

  16. Sekine, A. & Chiba, T. Electric-field-induced antiferromagnetic resonance in antiferromagnetic insulators with spin–orbit coupling. AIP Adv. 7, 055902 (2017).

    Article  ADS  Google Scholar 

  17. Taguchi, K. et al. Electromagnetic effects induced by a time-dependent axion field. Phys. Rev. B 97, 214409 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Terças, H., Rodrigues, J. & Mendonça, J. Axion-plasmon polaritons in strongly magnetized plasmas. Phys. Rev. Lett. 120, 181803 (2018).

    Article  ADS  PubMed  Google Scholar 

  19. Xiao, Y. et al. Nonlinear level attraction of cavity axion polariton in antiferromagnetic topological insulator. Phys. Rev. B 104, 115147 (2021).

    Article  ADS  CAS  Google Scholar 

  20. Curtis, J. B., Petrides, I. & Narang, P. Finite-momentum instability of a dynamical axion insulator. Phys. Rev. B 107, 205118 (2023).

    Article  ADS  CAS  Google Scholar 

  21. Marsh, D. J., Fong, K. C., Lentz, E. W., Šmejkal, L. & Ali, M. N. Proposal to detect dark matter using axionic topological antiferromagnets. Phys. Rev. Lett. 123, 121601 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Schütte-Engel, J. et al. Axion quasiparticles for axion dark matter detection. J. Cosmol. Astropart. Phys. 2021, 066 (2021).

    Article  MathSciNet  Google Scholar 

  23. Chigusa, S., Moroi, T. & Nakayama, K. Axion/hidden-photon dark matter conversion into condensed matter axion. J. High Energy Phys. 2021, 1–33 (2021).

    Article  MathSciNet  Google Scholar 

  24. Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684–695 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. De La Torre, A. et al. Nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

    Article  ADS  Google Scholar 

  26. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Gao, F. Y. et al. Giant chiral magnetoelectric oscillations in a van der Waals multiferroic. Nature 632, 273–279 (2024).

  30. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  31. Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. USA 116, 14511–14515 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Sinchenko, A. A., Ballou, R., Lorenzo, J. E., Grenet, T. & Monceau, P. Does (TaSe4)2I really harbor an axionic charge density wave? Appl. Phys. Lett. 120, 063102 (2022).

    Article  ADS  CAS  Google Scholar 

  34. Bartram, F. M. et al. Ultrafast coherent interlayer phonon dynamics in atomically thin layers of MnBi2Te4. npj Quantum Mater. 7, 84 (2022).

    Article  ADS  CAS  Google Scholar 

  35. Lujan, D. et al. Magnons and magnetic fluctuations in atomically thin MnBi2Te4. Nat. Commun. 13, 2527 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bartram, F. M. et al. Real-time observation of magnetization and magnon dynamics in a two-dimensional topological antiferromagnet MnBi2Te4. Sci. Bull. 68, 2734–2742 (2023).

    Article  Google Scholar 

  37. Padmanabhan, H. et al. Large exchange coupling between localized spins and topological bands in MnBi2Te4. Adv. Mater. 34, 2202841 (2022).

    Article  CAS  Google Scholar 

  38. Padmanabhan, H. et al. Interlayer magnetophononic coupling in MnBi2Te4. Nat. Commun. 13, 1929 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, L., Xiang, T. & Qi, J. Magnetic-order-mediated carrier and phonon dynamics in MnBi2Te4. Phys. Rev. Res. 6, 023073 (2024).

    Article  CAS  Google Scholar 

  40. Qiu, J.-X. et al. Axion optical induction of antiferromagnetic order. Nat. Mater. 22, 583–590 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Yang, S. et al. Odd-even layer-number effect and layer-dependent magnetic phase diagrams in MnBi2Te4. Phys. Rev. X 11, 011003 (2021).

    CAS  Google Scholar 

  47. Ovchinnikov, D. et al. Intertwined topological and magnetic orders in atomically thin Chern insulator MnBi2Te4. Nano Lett. 21, 2544–2550 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Cao, T., Shao, D.-F., Huang, K., Gurung, G. & Tsymbal, E. Y. Switchable anomalous Hall effects in polar-stacked 2D antiferromagnet MnBi2Te4. Nano Lett. 23, 3781–3787 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Li, Y. et al. Fabrication-induced even-odd discrepancy of magnetotransport in few-layer MnBi2Te4. Nat. Commun. 15, 3399 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chong, S. K. et al. Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4. Nat. Commun. 15, 2881 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fonseca, J. et al. Picosecond ultrasonics in magnetic topological insulator MnBi2Te4. Nano Lett. 24, 10562–10568 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, X.-X. et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 19, 838–842 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Gorghetto, M., Hardy, E. & Villadoro, G. More axions from strings. SciPost Phys. 10, 050 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  55. Saikawa, K., Redondo, J., Vaquero, A. & Kaltschmidt, M. Spectrum of global string networks and the axion dark matter mass. J. Cosmol. Astropart. Phys. 2024, 043 (2024).

    Article  Google Scholar 

  56. Horns, D. et al. Searching for WISPy cold dark matter with a dish antenna. J. Cosmol. Astropart. Phys. 2013, 016 (2013).

    Article  Google Scholar 

  57. Liu, J. et al. Broadband solenoidal haloscope for terahertz axion detection. Phys. Rev. Lett. 128, 131801 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  58. Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Zhang, Z. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. 20, 788–793 (2024).

    Article  CAS  Google Scholar 

  61. Yan, J.-Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    Article  CAS  Google Scholar 

  62. Zhong, D. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 15, 187–191 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Xiao, D., Shi, J. & Niu, Q. Berry phase correction to electron density of states in solids. Phys. Rev. Lett. 95, 137204 (2005).

    Article  ADS  PubMed  Google Scholar 

  66. Thonhauser, T., Ceresoli, D., Vanderbilt, D. & Resta, R. Orbital magnetization in periodic insulators. Phys. Rev. Lett. 95, 137205 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Ceresoli, D., Thonhauser, T., Vanderbilt, D. & Resta, R. Orbital magnetization in crystalline solids: multi-band insulators, Chern insulators, and metals. Phys. Rev. B 74, 024408 (2006).

    Article  ADS  Google Scholar 

  68. Raffaello, B. & Raffaele, R. Orbital magnetization in insulators: bulk versus surface. Phys. Rev. B 93, 174417 (2016).

    Article  Google Scholar 

  69. Chadha-Day, F., Ellis, J. & Marsh, D. J. E. Axion dark matter: what is it and why now? Sci. Adv. 8, eabj3618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Svrcek, P. & Witten, E. Axions in string theory. J. High Energy Phys. 2006, 051 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  71. O’Hare, C. cajohare/axionLimits:AxionLimits. GitHub https://cajohare.github.io/AxionLimits/ (2020).

  72. Tao, Z. et al. Valley-coherent quantum anomalous Hall state in AB-stacked MoTe2/WSe2 bilayers. Phys. Rev. X 14, 011004 (2024).

    CAS  Google Scholar 

  73. Ma, J. et al. Improving the sensitivity of DC magneto-optical Kerr effect measurement to 10−7 rad/\(\sqrt{{\rm{Hz}}}\). Chin. Opt. Lett. 20, 111201 (2022).

    Article  ADS  Google Scholar 

  74. Liu, Z. & Wang, J. Anisotropic topological magnetoelectric effect in axion insulators. Phys. Rev. B 101, 205130 (2020).

    Article  ADS  CAS  Google Scholar 

  75. Varnava, N. & Vanderbilt, D. Surfaces of axion insulators. Phys. Rev. B 98, 245117 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

J.-X.Q., J.A., A.G., H.L., M.S., J.M.B., P.P.O., Q.M., R.M., R.J.M., I.M., A.V. and S.-Y.X. were supported through the Center for the Advancement of Topological Semimetals (CATS), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy (DOE) Office of Science, through the Ames National Laboratory under contract DE-AC0207CH11358. The work in S.-Y.X. group was supported by CATS (task that CATS supported) and the Air Force Office of Scientific Research (AFOSR) grant FA9550-23-1-0040 (data analysis and manuscript writing). S.-Y.X. acknowledges the Sloan Foundation and Corning Fund for Faculty Development. S.-Y.X. and D.B. were supported by the National Science Foundation (NSF; career grant number DMR-2143177). Bulk single-crystal growth and characterization at UCLA were supported by the US DOE, Office of Science, Office of Basic Energy Sciences (BES) under award number DE-SC0021117. J.S.-E. was supported by the National Science Foundation under cooperative agreement 202027 and by the by Japan Science and Technology Agency (JST) as part of Adopting Sustainable Partnerships for Innovative Research Ecosystem (ASPIRE), grant number JPMJAP2318. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant numbers 21H05233 and 23H02052), the CREST (JPMJCR24A5), JST and World Premier International Research Center Initiative (WPI), MEXT, Japan. C.F. was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through SFB 1143 (project ID 24731007) and the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter-ct.qmat (EXC 2147, project number 390858490). H.L. acknowledges the support by Academia Sinica in Taiwan under grant number AS-iMATE-113-15. T.-R.C. was supported by National Science and Technology Council (NSTC) in Taiwan (programme number MOST111-2628-M-006-003-MY3 and NSTC113-2124-M-006-009-MY3), National Cheng Kung University (NCKU), Taiwan, and National Center for Theoretical Sciences, Taiwan. This research was supported, in part, by the Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at NCKU. T.-R.C. thanks the National Center for High-performance Computing (NCHC) of National Applied Research Laboratories (NARLabs) in Taiwan for providing computational and storage resources. The work at Northeastern University (A.B. and B.G.) was supported by the National Science Foundation through the Expand-QISE award NSF-OMA-2329067 and benefited from the resources of Northeastern University’s Advanced Scientific Computation Center, the Discovery Cluster, the Massachusetts Technology Collaborative award MTC-22032, and the Quantum Materials and Sensing Institute. For the computational work at S.N. Bose National Center for Basic Sciences (SNBNCBS), B.G. acknowledge National Supercomputing Mission (NSM) for providing computing resources of ‘PARAM RUDRA’ at SNBNCBS, Saltlake, Kolkata-700106, India, which is implemented by C-DAC and supported by the Ministry of Electronics and Information Technology (MeitY) and Department of Science and Technology (DST), Government of India. J.M.B. and R.M.’s experimental activities were performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement number DMR-2128556 and the State of Florida. D.J.E.M. is supported by an Ernest Rutherford Fellowship (ST/T004037/1) and by a Science and Technologies Facilities Council grant (ST/X000753/1). Q.M. also acknowledges support from National Science Foundation (NSF) CAREER award DMR-2143426 and a Sloan Fellowship. O.L., I.P., E.M.B. and P.N. were supported by the Quantum Science Center (QSC), a National Quantum Information Science Research Center of the US Department of Energy (DOE). O.L., I.P., E.M.B. and P.N. also acknowledge support from Gordon and Betty Moore Foundation grants 8048 and 12976, and from the John Simon Guggenheim Memorial Foundation (Guggenheim Fellowship).

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.X. conceived the experiments and supervised the project. J.-X.Q. fabricated the devices, performed the measurements and analysed data with help from A.G., C.T., H. Li, Y.-F.L., D.B., T.D., T.H., J.M.B., C.F., Q.M., R.M. and R.J.M. T.Q. and N.N. grew the bulk MnBi2Te4 single crystals. B.G., Y.-T.Y., M.S., J.A., I.P., O.L., E.M.B., P.N., T.-R.C., A.B., H. Lin, P.P.O., I.M. and A.V. conducted the theoretical studies including first-principles calculations and effective modelling. K.W. and T.T. grew the bulk hexagonal BN single crystals. J.S.-E., J.-X.Q., K.C.F., D.J.E.M. and S.-Y.X. made the calculation of sensitivity for dark-matter axion detection. S.-Y.X. and J.-X.Q. wrote the paper with input from all authors.

Corresponding author

Correspondence to Su-Yang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Luyi Yang, Haijun Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Characterization of the magnon frequency in 6-layer MnBi2Te4.

a, Time evolution of out-of-phase magnon. c,\(\widehat{z}\) projection of the out-of-phase magnon, which resembles the antiferromagnetic amplitude mode. b,d, Same as panels (a,c) but for in-phase magnon, which features an oscillation of net magnetization along \(\widehat{z}\). e, We followed the method established in ref. 53 (see detailed discussion in Methods.2). A monolayer WSe2 was stacked on top of MnBi2Te4, which breaks the layer degeneracy, allowing us to selectively probe the top layer information53. Pump-probe Kerr rotation under normal incidence was performed on this heterostructure. The pump laser launches the magnons. The probe Kerr rotation measures the out-of-plane magnetization Mz of the top layer preferentially because of the WSe2. f,g, Pump-induced ΔKerr data and FFT at different B.

Extended Data Fig. 2 Experimental setup for measuring the DAQ.

a, The DAQ manifests as a coherent oscillation of the magnetoelectric coupling, which requires us to measure α(t) with fs time-resolution. This was achieved by combining ultrafast pump-probe optics with 2D electronic devices. We built a dual-gated 6L MnBi2Te4 device (no WSe2). The probe beam combined with the gate-applied Ez measures α, whereas the pump beam excites the magnons. By varying the delay time t, we can measure α(t) with fs time-resolution. Experimentally, this was achieved by connecting two lock-in amplifiers. An optical chopper modulated the pump laser at frequency ω1 = 1000 Hz. A functional generator modulated the gate Ez at frequency ω2 = 0.7 Hz. The signal collected by the balanced photodiode detector was first fed into a lock-in at the chopper frequency ω1 = 1000 Hz and then into the second lock-in at the Ez frequency ω2 = 0.7 Hz. The wavelength of the pump beam was set to 1030 nm, and the pump fluence is ~ 160 μJ/cm2. b, Pump-induced Kerr rotation at different AC E field modulation amplitudes. c, Pump fluence dependence of the oscillation amplitude of Δα. d, Coherent oscillation of Δα as a function of pump light polarization. The indifference of pump light polarization suggests excitation mechanism is laser heating induced coherent oscillation of spins30. e, Coherent oscillation of Δα as a function of pump wavelength.

Extended Data Fig. 3 The magnetoelectric coupling and the layer Hall effect in MnBi2Te4.

a, Schematics for the magnetoelectric coupling (\(\alpha =\frac{{M}_{z}}{{E}_{z}}\)). b, Maintext Fig. 4b shows the measured α as a function of the charge density n. By taking a derivative of this data, we get \(\frac{d\alpha }{dn}\) as a function of n. c, Measured α as a function of in-plane magnetic field B. d, Schematics for the layer Hall effect. An out-of-plane electric field Ez induces an anomalous Hall effect (finite σxy) in 6L MnBi2Te4. e,Ez induced σxy as a function of carrier density n. This Ez induced σxy directly measures \(\frac{d{\mathcal{D}}}{dn}\) (\({\mathcal{D}}\) is the Berry curvature real space dipole), which is marked in the right axis. f,Ez induced σxy as a function of B.

Extended Data Fig. 4 Determining the conversion factor γ.

a, Out-of-plane magnetization as function of out-of-plane magnetic field B for bulk MnBi2Te4 measured by SQUID. With increasing B, the magnetic order changes from the layered antiferromagnetic state to a spin-flop state. b, In the spin-flop state at B = 6 T, we measured both the Kerr rotation and the Mz, from which we determined the value of γ. c, In the antiferromagnetic ground state at B = 0 T, 6L MnBi2Te4 features an electric field induced magnetization. The magneto-electric coupling α is given by \(\alpha =\gamma \frac{dKerr}{d{E}_{z}}\). Therefore, by using the γ determined in the spin-flop state, we converted α of the antiferromagnetic state to the unit of \(\frac{{e}^{2}}{2h}\). In this method, we needed to assume that the spin flop state at B = 6 T and the antiferromagnetic state at B = 0 T have the same γ. This is an approximation.

Extended Data Fig. 5 Microscopic mechanism for the magnetoelectric coupling in 6L MnBi2Te4.

a, First-principles band structures of 6L MnBi2Te4 with the Mn 3d orbitals highlighted. b, Calculated αzz from the spin and orbital contributions. The total αzz is the sum of the two contributions. c, Comparison of θ and Txx, which are the trace part and traceless part of αii, respectively (normalized by e2/2h).

Extended Data Fig. 6 Ultrafast Berry curvature oscillation by antiferromagnetic magnons.

a,d, In the even-layer MnBi2Te4, the antiferromagnetic order couples to the Dirac surface states, generating large Berry curvature on the top and bottom surfaces. We study how the Berry curvature responds upon exciting the out-of-phase or the in-phase magnon. b,e, Calculated Berry curvature sum of the top and bottom surfaces at different spin angles during the magnon oscillation under the frozen magnon approximation. The grey area (i.e., the difference of Berry curvature from top and bottom surfaces) is the Berry curvature real space dipole \({\mathcal{D}}\) (\({\mathcal{D}}=\alpha \)). c,f, Calculated θ at different spin angles during the magnon oscillation.

Extended Data Fig. 7 Calculated DAQ strength of 2D even-layer MnBi2Te4.

The strength of DAQ is measured by the change of θ per change of the antiferromagnetic order parameter L, \(\frac{\delta \theta }{\delta L}\)6. In 2D even-layer MnBi2Te4, the top and bottom surface state wavefunction can overlap and hybridize. This hybridization gap competes with with magnetism induced Zeeman gap, which leads to a large but non-quantized θ. We theoretically study the \(\frac{\delta \theta }{\delta L}\) by calculating θ as a function of L for different thicknesses. a,b, Wavefunction hybridization for 6SL and 14SL. c, Calculated θ vs. AFM order Lz for different thicknesses. d, δθ/δLz as a function of thickness.

Extended Data Fig. 8 Kerr effect scheme of dark matter axion detection using DAQ.

a, The Kerr effect scheme: a dark matter axion resonantly excite an axion polariton inside the DAQ material under an external B field (B = 5 T). The axion polariton is essentially a coherent oscillation of θ(ω), where \(\omega =\sqrt{{m}_{{\rm{DAQ}}}^{2}+{b}^{2}}\). By applying an out-of-plane electric field Ez, such a coherent oscillation of θ(ω) will lead to an oscillating magnetization Mz(ω) = θ(ω)Ez. We propose to use MOKE with to measure this oscillating magnetization. b, Dark matter detection sensitivity (gaγ) as a function of the axion mass using the Kerr scheme (see details in Methods.6).

Supplementary information

Supplementary Information

Supplementary sections 1–6, including Supplementary Figs. 1–41, Table 1 and References.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, JX., Ghosh, B., Schütte-Engel, J. et al. Observation of the axion quasiparticle in 2D MnBi2Te4. Nature 641, 62–69 (2025). https://doi.org/10.1038/s41586-025-08862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08862-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing