Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bulk superconductivity near 40 K in hole-doped SmNiO2 at ambient pressure

Abstract

The discovery of superconductivity in the Ba-La-Cu-O system (the cuprate) in the 30 K range marked a significant breakthrough, which inspired extensive exploration of oxide-based, layered superconductors to identify electron pairing with higher critical temperatures (Tc)1. Despite recent observations of superconductivity in nickel oxide-based compounds (the nickelates), evidence of Cooper pairing above 30 K in a system that is isostructural to the cuprates, but without copper, at ambient pressure and without lattice compression has remained elusive2,3,4,5. Here we report superconductivity with a Tc approaching 40 K under ambient pressure in d9−x hole-doped, late rare earth, infinite-layer nickel oxide (Sm-Eu-Ca-Sr)NiO2 thin films with negligible lattice compression, supported by observations of a zero-resistance state at 31 K and the Meissner effect. The material can be synthesized with essentially no Ruddlesden–Popper-type structural defects, exhibiting ultralow resistivity of approximately 0.01 mΩ cm, and with a residual resistivity ratio of up to 10. Our findings demonstrate the potential for achieving high-temperature superconductivity using strongly correlated d-electron metal oxides beyond copper as the building blocks for superconductivity, and offering a promising platform for further exploration and understanding of high-temperature Cooper pairing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural information on the superconducting SECS nickel oxide thin films.
Fig. 2: Transport characteristics of the superconducting SECS nickel oxide thin films.
Fig. 3: Zero resistance and diamagnetic state in the SECS nickel oxide thin film.
Fig. 4: Meissner state in the SECS nickel oxide thin films.
Fig. 5: Discoveries of superconducting d9−x nickel oxides.

Similar content being viewed by others

Data availability

The data that support the findings of this study are provided in the manuscript and Supplementary Information. All other relevant data are available from the corresponding authors.

References

  1. Bednorz, J. G. & Müller, K. A. Possible high-Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Takada, K. et al. Superconductivity in two-dimensional CoO2 layers. Nature 422, 53–55 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article  PubMed  ADS  CAS  Google Scholar 

  5. Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

    Article  PubMed  ADS  CAS  Google Scholar 

  6. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the plain vanilla version of RVB. J. Phys. Condens. Matter 16, R755–R769 (2004).

    Article  CAS  Google Scholar 

  7. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  CAS  Google Scholar 

  8. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  PubMed  ADS  CAS  Google Scholar 

  9. Crespin, M., Levitz, P. & Gatineau, L. Reduced forms of LaNiO3 perovskite. Part 1.—Evidence for new phases: La2Ni2O5 and LaNiO2. J. Chem. Soc. Faraday Trans. 2 79, 1181–1194 (1983).

    Article  CAS  Google Scholar 

  10. Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 121, 8843–8854 (1999).

    Article  CAS  Google Scholar 

  11. Zhou, G., Jiang, F., Zang, J., Quan, Z. & Xu, X. Observation of superconductivity in the LaNiO3/La0.7Sr0.3MnO3 superlattice. ACS Appl. Mater. Interfaces 10, 1463–1467 (2018).

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, J. et al. Large orbital polarization in a metallic square-planar nickelate. Nat. Phys. 13, 864–869 (2017).

    Article  CAS  Google Scholar 

  13. Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).

    Article  ADS  Google Scholar 

  14. Lee, K. W. & Pickett, W. E. Infinite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

    Article  ADS  Google Scholar 

  15. Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).

    Article  PubMed  ADS  CAS  Google Scholar 

  16. Zeng, S. et al. Superconductivity in infinite-layer nickelate La1−xCaxNiO2 thin films. Sci. Adv. 8, eabl9927 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Osada, M., Wang, B. Y., Lee, K., Li, D. & Hwang, H. Y. Phase diagram of infinite layer praseodymium nickelate Pr1−xSrxNiO2 thin films. Phys. Rev. Mater. 4, 121801(R) (2020).

    Article  ADS  Google Scholar 

  18. Osada, M. et al. Nickelate superconductivity without rare-earth magnetism: (La,Sr)NiO2. Adv. Mater. 33, 2104083 (2021).

    Article  CAS  Google Scholar 

  19. Wei, W., Vu, D., Zhang, Z., Walker, F. J. & Ahn, C. H. Superconducting Nd1−xEuxNiO2 thin films using in situ synthesis. Sci. Adv. 9, eadh3327 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sahib, H. et al. Superconductivity in PrNiO2 infinite-layer nickelates. Adv. Mater. 37, 2416187 (2025).

  21. Parzyck, C. T. et al. Superconductivity in the parent infinite-layer nickelate NdNiO2. Preprint at https://arxiv.org/abs/2410.02007 (2024).

  22. Ko, E. K. et al. Signatures of ambient pressure superconductivity in thin film La3Ni2O7. Nature 638, 935–940 (2025).

    Article  PubMed  CAS  Google Scholar 

  23. Parzyck, C. T. et al. Absence of 3a0 charge density wave order in the infinite-layer nickelate NdNiO2. Nat. Mater. 23, 486–491 (2024).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  24. Krieger, G. et al. Charge and spin order dichotomy in NdNiO2 driven by the capping layer. Phys. Rev. Lett. 129, 27002 (2022).

    Article  ADS  CAS  Google Scholar 

  25. Rossi, M. et al. Universal orbital and magnetic structures in infinite-layer nickelates. Phys. Rev. B 109, 024512 (2024).

    Article  ADS  CAS  Google Scholar 

  26. Chow, L. E. et al. Pauli-limit violation in lanthanide infinite-layer nickelate superconductors. Preprint at https://arxiv.org/abs/2204.12606 (2022).

  27. Wang, B. Y. et al. Effects of rare-earth magnetism on the superconducting upper critical field in infinite-layer nickelates. Sci. Adv. 9, eadf6655 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang, B. Y. et al. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat. Phys. 17, 473–477 (2021).

    Article  CAS  Google Scholar 

  29. Chow, L. E. et al. Pairing symmetry in infinite-layer nickelate superconductor. Preprint at https://arxiv.org/abs/2201.10038 (2022).

  30. Harvey, S. P. et al. Evidence for nodal superconductivity in infinite-layer nickelates. Preprint at https://arxiv.org/abs/2201.12971 (2022).

  31. Chow, L. E. & Ariando, A. Infinite-layer nickelate superconductors: a current experimental perspective of the crystal and electronic structures. Front. Phys. 10, 834658 (2022).

    Article  Google Scholar 

  32. Wang, B. Y., Lee, K. & Goodge, B. H. Experimental progress in superconducting nickelates. Annu. Rev. Condens. Matter Phys. 15, 305–324 (2024).

    Article  ADS  CAS  Google Scholar 

  33. Held, K. et al. Phase diagram of nickelate superconductors calculated by dynamical vertex approximation. Front. Phys. 9, 810394 (2022).

    Article  Google Scholar 

  34. Karp, J. et al. Many-body electronic structure of NdNiO2 and CaCuO2. Phys. Rev. X 10, 021061 (2020).

    CAS  Google Scholar 

  35. Foyevtsova, K., Elfimov, I. & Sawatzky, G. A. Distinct electridelike nature of infinite-layer nickelates and the resulting theoretical challenges to calculate their electronic structure. Phys. Rev. B 108, 205124 (2023).

    Article  ADS  CAS  Google Scholar 

  36. Hepting, M., Dean, M. P. M. & Lee, W. S. Soft X-ray spectroscopy of low-valence nickelates. Front. Phys. 9, 808683 (2021).

    Article  Google Scholar 

  37. Nomura, Y. & Arita, R. Superconductivity in infinite-layer nickelates. Reports Prog. Phys. 85, 052501 (2022).

    Article  ADS  CAS  Google Scholar 

  38. Been, E. M. et al. On the nature of valence charge and spin excitations via multi-orbital Hubbard models for infinite-layer nickelates. Front. Phys. 10, 836959 (2022).

    Article  Google Scholar 

  39. Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).

    Article  PubMed  ADS  CAS  Google Scholar 

  40. Zhang, R. et al. Magnetic and f-electron effects in LaNiO2 and NdNiO2 nickelates with cuprate-like \(3{d}_{{x}_{2}}\,{y}_{2}\) band. Commun. Phys. 4, 118 (2021).

    Article  CAS  Google Scholar 

  41. Lechermann, F. Emergent flat-band physics in d9−δ multilayer nickelates. Phys Rev. B 105, 155109 (2022).

    Article  ADS  CAS  Google Scholar 

  42. Armitage, N. P., Fournier, P. & Greene, R. L. Progress and perspectives on electron-doped cuprates. Rev. Mod. Phys. 82, 2421–2487 (2010).

    Article  ADS  CAS  Google Scholar 

  43. Wang, Z., Zhang, G. M., Yang, Y. F. & Zhang, F. C. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys. Rev. B 102, 220501(R) (2020).

    Article  ADS  Google Scholar 

  44. Bandyopadhyay, S., Adhikary, P., Das, T., Dasgupta, I. & Saha-Dasgupta, T. Superconductivity in infinite-layer nickelates: Role of f orbitals. Phys. Rev. B 102, 220502(R) (2020).

    Article  ADS  Google Scholar 

  45. Chow, L. E. et al. Dimensionality control and rotational symmetry breaking superconductivity in square-planar layered nickelates. Preprint at https://arxiv.org/abs/2301.07606 (2023).

  46. Li, D. et al. Superconducting dome in Nd1-xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).

    Article  PubMed  ADS  CAS  Google Scholar 

  47. Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1−xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

    Article  PubMed  ADS  CAS  Google Scholar 

  48. Bernardini, F., Bosin, A. & Cano, A. Geometric effects in the infinite-layer nickelates. Phys. Rev. Mater. 6, 044807 (2022).

    Article  CAS  Google Scholar 

  49. Attfield, J. P., Kharlanov, A. L. & McAllister, J. A. Cation effects in doped La2CuO4 superconductors. Nature 394, 157–159 (1998).

    Article  ADS  CAS  Google Scholar 

  50. Lee, Y. et al. Synthesis of superconducting freestanding infinite-layer nickelate heterostructures on the millimetre scale. Nat. Synth. https://doi.org/10.1038/s44160-024-00714-2 (2025).

  51. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  PubMed  CAS  Google Scholar 

  52. Ren, Z.-A. et al. Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping. Europhys. Lett. 83, 17002 (2008).

    Article  ADS  Google Scholar 

  53. Wang, N. N. et al. Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films. Nat. Commun. 13, 4367 (2022).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  54. Wang, Z. et al. Correlating the charge-transfer gap to the maximum transition temperature in Bi2Sr2Can−1CunO2n+4+δ. Science 381, 227–231 (2023).

    Article  PubMed  ADS  CAS  Google Scholar 

  55. Cava, R. J. et al. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature 332, 814–816 (1988).

    Article  ADS  CAS  Google Scholar 

  56. Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).

    Article  PubMed  ADS  CAS  Google Scholar 

  57. Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993).

    Article  ADS  CAS  Google Scholar 

  58. Sleight, A. W., Gillson, J. L. & Bierstedt, P. E. High-temperature superconductivity in the BaPb1−xBixO3 systems. Solid State Commun. 17, 27–28 (1975).

    Article  ADS  CAS  Google Scholar 

  59. Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2023).

    Article  PubMed  ADS  CAS  Google Scholar 

  60. Balakrishnan, P. P. et al. Extensive hydrogen incorporation is not necessary for superconductivity in topotactically reduced nickelates. Nat. Commun. 15, 7387 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We specially thank S.W. Zeng who developed the infinite-layer nickelate thin-film fabrication process at the National University of Singapore. The Ca/Sr-doped (La/Sm/Eu/Gd)NiO2 superconducting nickelate projects were originally initiated by S.W. Zeng and A. Ariando in 2020. We also thank Q. He who has supported the electron microscopy training for Z.Y. Luo. We acknowledge technical support from S.W. Zeng, Z.T. Zhang, P. Nandi, S.S. Kunniniyil, S. Prakash, Y. Ping, N. Fitriyah, X. Gao, J.B. Luo, K.Y. Yip, N.H. Teo, Z.S. Lim, G.J. Omar, X.M. Du, and D.D. Guo. We acknowledge useful discussions with E.E.M. Chia, K. Heldt, H.J.W.M. Hilgenkamp, H. Jani, K. Kuroki, F. Lechermann, K. Lee, D. Li, G. Sawatzky, D.F. Segedin, B.Y. Wang, X.R. Wang, W. Wei, Y.-F. Yang, and Y. Yu. This research is supported by the Ministry of Education (MOE), Singapore, under its Tier-2 Academic Research Fund (AcRF), grant no. MOE-T2EP50121-0018 and MOE-T2EP50123-0013, by the MOE Tier-3 Grant (MOE-MOET32023-0003) ‘Quantum Geometric Advantage’ and by the SUSTech-NUS Joint Research Program. S.L.E.C. acknowledges support from the President’s Graduate Fellowship provided by the National University of Singapore. The authors acknowledge the Singapore Synchrotron Light Source (SSLS) for providing the facility necessary for conducting the research. The laboratory is a National Research Infrastructure under the National Research Foundation (NRF) Singapore.

Author information

Authors and Affiliations

Authors

Contributions

S.L.E.C. and A.A. conceived the project and designed the experiments. S.L.E.C. synthesized the nickelate films conducted the transport characterization and performed the susceptibility measurements. Z.L. conducted the structural analysis of the films, performed X-ray diffraction experiments, prepared the focused-ion beam specimen, and performed electron microscopy characterization. All authors analysed and discussed the data and wrote the manuscript. A.A. secured the grants and supervised the entire project.

Corresponding authors

Correspondence to S. Lin Er Chow or A. Ariando.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Danfeng Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Structural analysis data.

Low-magnification STEM-HAADF and Fast-Fourier-Transform (FFT) images of the representative superconducting Sm0.79Eu0.12Ca0.04Sr0.05NiO2 thin film.

Extended Data Fig. 2 Additional structural analysis data.

STEM-HAADF images show several areas of the representative Sm0.79Eu0.12Ca0.04Sr0.05NiO2 thin film. The infinite-layer film is virtually free of RP-type structural defects.

Extended Data Fig. 3 Curvature of the resistivity \({\boldsymbol{\rho }}({\boldsymbol{T}}\,)\) curve \(\frac{{{\boldsymbol{\partial }}}^{{\bf{2}}}{\boldsymbol{\rho }}}{{\boldsymbol{\partial }}{{\boldsymbol{T}}}^{{\bf{2}}}}\) in Fig. 2b.

The superconducting transition ends with zero resistance state at 31 K. Inset shows the magnification of the \(\frac{{\partial }^{2}\rho }{\partial {T}^{2}}\) near the onset.

Extended Data Fig. 4 Comparison of the resistivity \({\boldsymbol{\rho }}({\boldsymbol{T}})\) curves between different dopant concentrations.

a, Sm0.73Eu0.2Ca0.07NiO2 (h = 0.19) with Tc,0 = 26.5 K. b, Sm0.53Eu0.4Ca0.07NiO2 (h = 0.31) which is outside of superconducting phase. The overdoped Sm0.53Eu0.4Ca0.07NiO2 is completely metallic at all temperatures, with a low residual resistivity \({\rho }_{0}=0.0108\,{\rm{m}}\Omega \,\bullet \,{\rm{cm}}\) and a residual-resistivity-ratio RRR ~10.

Extended Data Fig. 5 Raw magnetization data.

The M-T data measured at applied field \({\boldsymbol{H}}\parallel {\boldsymbol{c}}={\bf{2.9}},{\bf{3.6}},{\bf{9.7}}\) Oe of a representative Sm0.75Eu0.2Ca0.05NiO2 thin film.

Extended Data Fig. 6 Magnetic hysteresis loop.

Small superconducting M-H loops of the representative Sm0.75Eu0.2Ca0.05NiO2 thin film shown in Fig. 3 with diamagnetism observed below 27 K.

Extended Data Fig. 7 Normal state Hall coefficients of SECS thin films.

a, Hall coefficients versus temperature \({R}_{H}(T\,)\) plot. b, Majority holes versus electrons phase diagram of various infinite-layer nickelates \(({\rm{R}},{\rm{A}}){\rm{Ni}}{{\rm{O}}}_{2}\) showing RH sign crossover temperature Th as a function of hole doping, adapted from refs. 16,17,18,59. For Sm1-x-y-zEuxCaySrzNiO2, hole doping is estimated as \(h=0.6x+y+z\) (ref. 19). c, Maximum Th as a function of rare earth ions (R) from La – Sm.

Supplementary information

Supplementary Information

Supplementary discussion, Tables 1 and 2, Figs. 1–7 and references.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chow, S.L.E., Luo, Z. & Ariando, A. Bulk superconductivity near 40 K in hole-doped SmNiO2 at ambient pressure. Nature 642, 58–63 (2025). https://doi.org/10.1038/s41586-025-08893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08893-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing