Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: On the effects of fault alignment on slip stability

The Original Article was published on 18 June 2025

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lee, J., Tsai, V. C., Hirth, G., Chatterjee, A. & Trugman, D. T. Fault-network geometry influences earthquake frictional behaviour. Nature 631, 106–110 (2024).

    Article  CAS  PubMed  Google Scholar 

  2. Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. Solid Earth 88, 10359–10370 (1983).

    Article  Google Scholar 

  3. Fialko, Y. & Kaneko, Y. On the effects of fault alignment on slip stability. Nature https://doi.org/10.1038/s41586-025-09117-5 (2025).

  4. Titus, S. J. et al. Geologic versus geodetic deformation adjacent to the San Andreas fault, central California. Geol. Soc. Am. Bull. 123, 794–820 (2011).

    Article  ADS  Google Scholar 

  5. Hardebeck, J. L. & Michael, A. J. Stress orientations at intermediate angles to the San Andreas Fault, California. J. Geophys. Res. Solid Earth 109, B11303 (2004).

    Article  ADS  Google Scholar 

  6. Burgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Article  ADS  CAS  Google Scholar 

  7. Kilgore, B. D., Blanpied, M. L. & Dieterich, J. H. Velocity dependent friction of granite over a wide range of conditions. Geophys. Res. Lett. 20, 903–906 (1993).

    Article  ADS  Google Scholar 

  8. Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Tanikawa, W. & Shimamoto, T. Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake. J. Geophys. Res. Solid Earth 114, B01402 (2009).

    ADS  Google Scholar 

  10. Sawai, M., Niemeijer, A. R., Hirose, T. & Spiers, C. J. Frictional properties of JFAST core samples and implications for slow earthquakes at the Tohoku subduction zone. Geophys. Res. Lett. 44, 8822–8831 (2017).

    Article  ADS  Google Scholar 

  11. Xu, Z. & Li, H. in Earthquake and Disaster Risk: Decade Retrospective of the Wenchuan Earthquake (ed. Li, Y. G.) (Springer, 2019).

  12. Ozawa, S. et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature 475, 373–376 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Qiu, Q., Feng, L., Hermawan, I. & Hill, E. M. Coseismic and postseismic slip of the 2005 Mw 8.6 Nias-Simeulue earthquake: spatial overlap and localized viscoelastic flow. J. Geophys. Res. Solid Earth 124, 7445–7460 (2019).

    Article  Google Scholar 

  14. Thomas, M. Y., Avouac, J.-P., Champenois, J., Lee, J.-C. & Kuo, L.-C. Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. J. Geophys. Res. Solid Earth 119, 5114–5139 (2014).

    Article  ADS  Google Scholar 

  15. Cetin, E., Cakir, Z., Meghraoui, M., Ergintav, S. & Akoglu, A. M. Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochem. Geophys. Geosyst. 15, 2883–2894 (2014).

    Article  ADS  Google Scholar 

  16. Tsai, V. C., Hirth, G., Trugman, D. T. & Chu, S. X. Impact versus frictional earthquake models for high-frequency radiation in complex fault zones. J. Geophys. Res. Solid Earth 126, e2021JB022313 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.C.T. led the writing of the manuscript. J.L., G.H., A.C. and D.T.T. contributed to the editing of the manuscript and all authors approved the final version.

Corresponding author

Correspondence to Victor C. Tsai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Tsai, V.C., Hirth, G. et al. Reply to: On the effects of fault alignment on slip stability. Nature 642, E22–E23 (2025). https://doi.org/10.1038/s41586-025-09118-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-09118-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing