Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The Wild West of spike-in normalization

The proper use of spike-in normalization in ChIP-seq improves sensitivity for detecting genome-wide changes between conditions, but improper use is common, calling some biological conclusions into question. A survey of public datasets generates guidelines for implementation of spike-in normalization for future ChIP-seq experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spike-in normalization can accurately capture signal variation over wide and narrow dynamic ranges.
Fig. 2: A schematic depicting the impact of misusing spike-in normalization on downstream results.
Fig. 3: Variations in the ratios of spike-in to sample chromatin in public datasets.
Fig. 4: An example of the ability of a proper normalization strategy to correct for variations in the spike-in/sample ratio.

Data availability

Data generated in this study (Fig. 1b, Fig. 4, and Supplementary Figs. 2–6 and 8–14) are at GSE273915. Public data used to generate Fig. 1a are from GSE60104. UCSC Genome Browser sessions are available for Fig. 1b, Fig. 4 human (target) data and Fig. 4 yeast (spike-in) data.

Code availability

Code is available on a Github repository.

References

  1. Orlando, D. A. et al. Cell Rep. 9, 1163–1170 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Bonhoure, N. et al. Genome Res. 24, 1157–1168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meers, M. P., Bryson, T. D., Henikoff, J. G. & Henikoff, S. eLife 8, e46314 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen, K. et al. Mol. Cell. Biol. 36, 662–667 (2015).

    Article  PubMed  Google Scholar 

  5. Jiang, L. et al. Genome Res. 21, 1543–1551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skene, P. J. & Henikoff, S. eLife 6, e21856 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wooten, M., Takushi, B., Ahmad, K. & Henikoff, S. Sci. Adv. 9, eadg3257 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Terekhanova, N. V. et al. Nature 623, 432–441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Javasky, E. et al. Genome Res. 28, 1455–1466 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guertin, M. J., Cullen, A. E., Markowetz, F. & Holding, A. N. Nucleic Acids Res. 46, e75 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Egan, B. et al. PLoS One 11, e0166438 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ma, Z. et al. eLife 7, e35368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, Z. et al. Nat. Genet. 54, 295–305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yano, S. et al. Nat. Commun. 13, 4440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakato, R. et al. Nat. Commun. 14, 5647 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greulich, F., Wierer, M., Mechtidou, A., Gonzalez-Garcia, O. & Uhlenhaut, N. H. Cell Rep. 34, 108742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Okabe, A. et al. Nat. Genet. 52, 919–930 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Kent, W. J. et al. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Landt, S. G. et al. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cherry, J. M. et al. Nucleic Acids Res. 26, 73–79 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Love, M. I., Huber, W. & Anders, S. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grzybowski, A. T., Chen, Z. & Ruthenburg, A. J. Mol. Cell 58, 886–899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vale-Silva, L. A., Markowitz, T. E. & Hochwagen, A. BMC Genom. 20, 54 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported in part by US National Institutes of Health/National Institute of Mental Health grant R01MH127077 (A.G. and C.B.) and National Science Foundation grant 2003358 (A.G.). We thank I. Simon for providing conceptual guidance and feedback on the manuscript, R. Wachs for helping with illustrations and the Pillus lab at UCSD for providing S. cerevisiae cells and guidance on yeast culture and ChIP-seq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Benner or Alon Goren.

Ethics declarations

Competing interests

L.A.P., Y.C., C.B. and A.G. are inventors on related patent applications.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

Descriptions of Supplementary Tables 1–5, Supplementary Figs. 1–15, Table 1 and Methods.

Supplementary Table

Supplementary Tables 2–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, L.A., Cao, Y., Mendenhall, E.M. et al. The Wild West of spike-in normalization. Nat Biotechnol 42, 1343–1349 (2024). https://doi.org/10.1038/s41587-024-02377-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-024-02377-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing