Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacteriophage λ exonuclease and a 5′-phosphorylated DNA guide allow PAM-independent targeting of double-stranded nucleic acids

Abstract

Sequence-specific recognition of double-stranded nucleic acids is essential for molecular diagnostics and in situ imaging. Clustered regularly interspaced short palindromic repeats and Cas systems rely on protospacer-adjacent motif (PAM)-dependent double-stranded DNA (dsDNA) recognition, limiting the range of targetable sequences and leading to undesired off-target effects. Using single-molecule fluorescence resonance energy transfer analysis, we discover the enzymatic activity of bacteriophage λ exonuclease (λExo). We show binding of 5′-phosphorylated single-stranded DNA (pDNA) to complementary regions on dsDNA and DNA–RNA duplexes, without the need for a PAM-like motif. Upon binding, the λExo–pDNA system catalytically digests the pDNA into nucleotides in the presence of Mg2+. This process is sensitive to mismatches within a wide range of the pDNA-binding region, resulting in exceptional sequence specificity and reduced off-target effects in various applications. The absence of a requirement for a specific motif such as a PAM sequence greatly broadens the range of targets. We demonstrate that the λExo–pDNA system is a versatile tool for molecular diagnostics, DNA computing and gene imaging applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: λExo-mediated pDNA interrogation of ds-nucleic acids characterized by smFRET.
Fig. 2: Target nucleic acids induced pDNA enzymatic degradation in the presence of Mg2+.
Fig. 3: Detection of ds-nucleic acids by λExo–pDNA using ensemble fluorescence assay.
Fig. 4: Pathogen nucleic acid tests.
Fig. 5: ds-nucleic acid-responsive DNA circuits.
Fig. 6: In situ genomic locus imaging by λExo–pDNA.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

Code availability

The code used in this study was described in a previous study51 and is available from GitHub (https://github.com/Su-Laboratory/smFRET).

References

  1. Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng, Y. et al. CRISPR interference-based specific and efficient gene inactivation in the brain. Nat. Neurosci. 21, 447–454 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Guilinger, J. P., Thompson, D. B. & Liu, D. R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577–582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, B. H. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng, W. L., Shi, X. H., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 112, 11870–11875 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, Z. et al. PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosens. Bioelectron. 204, 114076 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Mitsis, P. G. & Kwagh, J. G. Characterization of the interaction of lambda exonuclease with the ends of DNA. Nucleic Acids Res. 27, 3057–3063 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, J., McCabe, K. A. & Bell, C. E. Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proc. Natl Acad. Sci. USA 108, 11872–11877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pan, X. et al. A structure–activity analysis for probing the mechanism of processive double-stranded DNA digestion by λ exonuclease trimers. Biochemistry 54, 6139–6148 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Tian, J. et al. dsDNA/ssDNA-switchable isothermal colorimetric biosensor based on a universal primer and λ exonuclease. Sens. Actuators B Chem. 323, 128674 (2020).

    Article  CAS  Google Scholar 

  16. Liu, L., Lei, J., Gao, F. & Ju, H. A DNA machine for sensitive and homogeneous DNA detection via λ exonuclease assisted amplification. Talanta 115, 819–822 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Yu, Y. et al. Digestion of dynamic substrate by exonuclease reveals high single-mismatch selectivity. Anal. Chem. 90, 13655–13662 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hohlbein, J., Craggs, T. D. & Cordes, T. Alternating-laser excitation: single-molecule FRET and beyond. Chem. Soc. Rev. 43, 1156–1171 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Sustarsic, M. & Kapanidis, A. N. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 34, 52–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, T. et al. Noncanonical substrate preference of λ exonuclease for 5′-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction. Nucleic Acids Res. 46, 3119–3129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, T. et al. DNA terminal structure-mediated enzymatic reaction for ultra-sensitive discrimination of single nucleotide variations in circulating cell-free DNA. Nucleic Acids Res. 46, e24 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, J. J., McCabe, K. A. & Bell, C. E. Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity. Proc. Natl Acad. Sci. USA 108, 11872–11877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, J., Pan, X. & Bell, C. E. Crystal structure of λ exonuclease in complex with DNA and Ca2+. Biochemistry 53, 7415–7425 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Singh, D. et al. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Nat. Struct. Mol. Biol. 25, 347–354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cromwell, C. R. et al. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat. Commun. 9, 1448 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim, Y.-M., Choi, K. H., Jang, Y.-J., Yu, J. & Jeong, S. Specific modulation of the anti-DNA autoantibody–nucleic acids interaction by the high affinity RNA aptamer. Biochem. Biophys. Res. Commun. 300, 516–523 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Machinek, R. R., Ouldridge, T. E., Haley, N. E., Bath, J. & Turberfield, A. J. Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun. 5, 5324 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Monis, P. T. & Giglio, S. Nucleic acid amplification-based techniques for pathogen detection and identification. Infect. Genet. Evol. 6, 2–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Nouri, R. et al. CRISPR-based detection of SARS-CoV-2: a review from sample to result. Biosens. Bioelectron. 178, 113012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thong, K. L., Lai, M., Teh, C. S. J. & Chua, K. H. Simultaneous detection of methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa by multiplex PCR. Trop. Biomed. 28, 21–31 (2011).

    CAS  PubMed  Google Scholar 

  32. De Oliveira, D. M. et al. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 33, e00181-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, Y. et al. Detection of SARS-CoV-2 and its mutated variants via CRISPR–Cas13-based transcription amplification. Anal. Chem. 93, 3393–3402 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Liang, Y. et al. CRISPR–Cas12a-based detection for the major SARS-CoV-2 variants of concern. Microbiol. Spectr. 9, e01017–e01021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gootenberg, J. S. et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science 360, 439–444 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jackson, C. B., Zhang, L., Farzan, M. & Choe, H. Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem. Biophys. Res. Commun. 538, 108–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Martin, D. P. et al. The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell 184, 5189–5200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, S. et al. Boolean logic gate based on DNA strand displacement for biosensing: current and emerging strategies. Nanoscale Horiz. 6, 298–310 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Song, T. et al. Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase. Nat. Nanotechnol. 14, 1075–1081 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, C. et al. The recent development of hybridization chain reaction strategies in biosensors. ACS Sens. 5, 2977–3000 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Li, L. et al. Base excision repair-inspired DNA motor powered by intracellular apurinic/apyrimidinic endonuclease. Nanoscale 11, 1343–1350 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. van Tricht, C., Voet, T., Lammertyn, J. & Spasic, D. Imaging the unimaginable: leveraging signal generation of CRISPR–Cas for sensitive genome imaging. Trends Biotechnol. 41, 769–784 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Bi, S., Yue, S. Z. & Zhang, S. S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging and biomedicine. Chem. Soc. Rev. 46, 4281–4298 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Liang, Y. et al. Visualizing single-nucleotide variations in a nuclear genome using colocalization of dual-engineered CRISPR probes. Anal. Chem. 94, 11745–11752 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, J., Im, H. & Lee, G. Unwinding mechanism of SARS-CoV helicase (nsp13) in the presence of Ca2+, elucidated by biochemical and single-molecular studies. Biochem. Biophys. Res. Commun. 668, 35–41 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, J., Fu, S., Zhang, C., Liu, H. & Su, X. DNA logic circuits for cancer theranostics. Small 18, e2108008 (2022).

    Article  PubMed  Google Scholar 

  50. Brown, J. M., De Ornellas, S., Parisi, E., Schermelleh, L. & Buckle, V. J. RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure. Nat. Protoc. 17, 1306–1331 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Blanco, M. & Walter, N. G. Analysis of complex single-molecule FRET time trajectories. Methods Enzymol. 472, 153–178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Research Development Program of China (2022YFC2603902), the National Natural Science Foundation of China (32271521, 22325801 and 31971361), the Natural Science Foundation of Beijing Municipality (5212013), the Fundamental Research Funds for the Central Universities (PT2406) and the Talent Cultivation of State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology (oic-2024020007).

Author information

Authors and Affiliations

Authors

Contributions

X.S. conceptualized and designed the study. S.F., J. Li, J.C., X.S., L.Z. and J. Liu designed, performed and analyzed the experiments. X.S., S.F. and H.L. wrote and revised the paper. All authors discussed the results and revised or commented on the paper.

Corresponding author

Correspondence to Xin Su.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Magdy Mahfouz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Tables 2–4, Notes 1 and 2 and unprocessed gels for supplementary figures.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Figs. 3, 4, 6–8, 11–14, 17–26, 30 and 31.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Li, J., Chen, J. et al. Bacteriophage λ exonuclease and a 5′-phosphorylated DNA guide allow PAM-independent targeting of double-stranded nucleic acids. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02388-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing