Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy

An Author Correction to this article was published on 03 February 2025

This article has been updated

Abstract

The complex nature of the immunosuppressive tumor microenvironment (TME) requires multi-agent combinations for optimal immunotherapy. Here we describe multiplex universal combinatorial immunotherapy via gene silencing (MUCIG), which uses CRISPR–Cas13d to silence multiple endogenous immunosuppressive genes in the TME, promoting TME remodeling and enhancing antitumor immunity. MUCIG vectors targeting four genes delivered by adeno-associated virus (AAV) (Cd274/Pdl1, Lgals9/Galectin9, Lgals3/Galectin3 and Cd47; AAV-Cas13d-PGGC) demonstrate significant antitumor efficacy across multiple syngeneic tumor models, remodeling the TME by increasing CD8+ T-cell infiltration while reducing neutrophils. Whole transcriptome profiling validates the on-target knockdown of the four target genes and shows limited potential off-target or downstream gene alterations. AAV-Cas13d-PGGC outperforms corresponding shRNA treatments and individual gene knockdown. We further optimize MUCIG by employing high-fidelity Cas13d (hfCas13d), which similarly showed potent gene silencing and in vivo antitumor efficacy, without weight loss or liver toxicity. MUCIG represents a universal method to silence multiple immune genes in vivo in a programmable manner, offering broad efficacy across multiple tumor types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiplexed Cas13d repression of immunosuppressive genes as combinatorial cancer immunotherapy.
Fig. 2: A four-gene combination immunotherapy AAV–Cas13d–PGGC demonstrates broad antitumor activity across diverse syngeneic cancer models.
Fig. 3: AAV–Cas13d–PGGC treatment remodels the immunosuppressive TME.
Fig. 4: Cas13d-mediated repression of immunosuppressive genes demonstrates superior antitumor efficacy compared with shRNAs.
Fig. 5: AAV–Cas13d is immunogenic in vivo.
Fig. 6: Optimized combinatorial targeting of immunosuppressive genes by hfCas13d promotes antitumor immunity.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this Article and its Supplementary Information. Data and statistics of nonNGS experiments are provided in an Excel file in the Supplementary Information. Raw sequencing data of single-cell RNA-Seq, pool screen and off-target bulk RNA-Seq have been deposited to the Gene Expression Omnibus with accession number GSE269516 ref. 62. Processed data for genomic sequencing and gene expression (NGS experiments) are provided as processed quantifications in Supplementary Data. All other data and materials that support the findings of this research are available to the academic community upon reasonable request to the corresponding author. Source data are provided with this paper.

Code availability

All codes used for this study are available via Code Ocean at https://codeocean.com/capsule/0336604/tree/v1 (ref. 63).

Change history

References

  1. Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tormoen, G. W., Crittenden, M. R. & Gough, M. J. Role of the immunosuppressive microenvironment in immunotherapy. Adv. Radiat. Oncol. 3, 520–526 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim, R., Emi, M., Tanabe, K. & Arihiro, K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 66, 5527–5536 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Munn, D. H. & Bronte, V. Immune suppressive mechanisms in the tumor microenvironment. Curr. Opin. Immunol. 39, 1–6 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wei, S. C., Duffy, C. R. & Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8, 1069–1086 (2018).

    Article  PubMed  Google Scholar 

  9. Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Li, X., Shao, C., Shi, Y. & Han, W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J. Hematol. Oncol. 11, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hammers, H. et al. Phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (MRCC). Annal. Oncol. 42, 3033–3046 (2014).

    Google Scholar 

  13. Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 38, 255 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boettcher, M. & McManus, M. T. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol. Cell 58, 575–585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Granados-Riveron, J. T. & Aquino-Jarquin, G. CRISPR-Cas13 precision transcriptome engineering in cancer. Cancer Res. 78, 4107–4113 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676 e614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan, W. X. et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-___domain-containing accessory protein. Mol. Cell 70, 327–339 e325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tieu, V. et al. A versatile CRISPR–Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell 187, 1278–1295 e1220 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei, J. et al. Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting. Cell Syst. 14, 1087–1102 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Morelli, K. H. et al. An RNA-targeting CRISPR–Cas13d system alleviates disease-related phenotypes in Huntington’s disease models. Nat. Neurosci. 26, 27–38 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Tang, X. E., Tan, S. X., Hoon, S. & Yeo, G. W. Pre-existing adaptive immunity to the RNA-editing enzyme Cas13d in humans. Nat. Med. 28, 1372–1376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wessels, H. H. et al. Massively parallel Cas13 screens reveal principles for guide RNA design. Nat. Biotechnol. 38, 722–727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi, P. et al. Collateral activity of the CRISPR/RfxCas13d system in human cells. Commun. Biol. 6, 334 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelley, C. P., Haerle, M. C. & Wang, E. T. Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR-Cas13d in mammalian cells. Cell Rep. 40, 111226 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hart, S. K. et al. Low copy CRISPR-Cas13d mitigates collateral RNA cleavage. Preprint at bioRxiv https://doi.org/10.1101/2024.05.13.594039 (2024).

  27. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Naso, M. F., Tomkowicz, B., Perry, W. L. 3rd & Strohl, W. R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31, 317–334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bell, C. L. et al. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J. Clin. Invest. 121, 2427–2435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ru, B. et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics 35, 4200–4202 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, X. et al. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell 184, 5357–5374 e5322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Shen, L., Evel-Kabler, K., Strube, R. & Chen, S. Y. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat. Biotechnol. 22, 1546–1553 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crosby, E. J. et al. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology 7, e1421891 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang, Z., Kang, B., Li, C., Chen, T. & Zhang, Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47, W556–W560 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mosely, S. I. et al. Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunol. Res. 5, 29–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. van Spriel, A. B. et al. A regulatory role for CD37 in T cell proliferation. J. Immunol. 172, 2953–2961 (2004).

    Article  PubMed  Google Scholar 

  40. Kong, Y. et al. T-cell immunoglobulin and ITIM ___domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin. Cancer Res. 22, 3057–3066 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Grzywa, T. M. et al. Myeloid cell-derived arginase in cancer immune response. Front. Immunol. 11, 938 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gómez-Herranz, M. et al. The effects of IFITM1 and IFITM3 gene deletion on IFNγ stimulated protein synthesis. Cell Signal. 60, 39–56 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Srikrishna, G. S100A8 and S100A9: new insights into their roles in malignancy. J. Innate Immun. 4, 31–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Pratt, A. J. & MacRae, I. J. The RNA-induced silencing complex: a versatile gene-silencing machine. J. Biol. Chem. 284, 17897–17901 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tong, H. et al. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat. Biotechnol. 41, 108–119 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Zhou, F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int. Rev. Immunol. 28, 239–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Baghban, R. et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18, 59 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ribeiro Franco, P. I., Rodrigues, A. P., de Menezes, L. B. & Pacheco Miguel, M. Tumor microenvironment components: allies of cancer progression. Pathol. Res. Pract. 216, 152729 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Motz, G. T. & Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 39, 61–73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ni, G. et al. Targeting interleukin-10 signalling for cancer immunotherapy, a promising and complicated task. Hum. Vaccin. Immunother. 16, 2328–2332 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Biswas, S. et al. Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J. Clin. Invest. 117, 1305–1313 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deyle, D. R. & Russell, D. W. Adeno-associated virus vector integration. Curr. Opin. Mol. Ther. 11, 442–447 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McGeary, S. E. et al. The biochemical basis of microRNA targeting efficacy. Science 366, eaav1741 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garcia, D. M. et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol. 18, 1139–1146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Wessels, H.-H. et al. Prediction of on-target and off-target activity of CRISPR–Cas13d guide RNAs using deep learning. Nat. Biotechnol. 42, 628–637 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Joung, J. et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009).

    Article  Google Scholar 

  62. Zhang, F., et al. Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy. GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE269516 (2024).

  63. Zhang, F., Chow, R. D., He, E., Dong, C. & Chen, S. Multiplexed inhibition of immunosuppressive genes with Cas13d for on-demand combinatorial cancer immunotherapy. Code Ocean https://codeocean.com/capsule/0336604/tree/v1 (2024).

Download references

Acknowledgements

We thank all members of the Chen laboratory as well as various colleagues in Yale Genetics, SBI, CSBC, MCGD, Immunobiology, BBS, YCC, YSCC and CBDS for assistance and/or discussions. We thank various Yale Core Facilities such as YARC, WCFC, YCGA, HPC and WCAC for technical support. S.C. is supported by NIH/NCI/NIDA (grant numbers DP2CA238295, R01CA231112, R33CA225498, RF1DA048811 and R33CA281702), DoD (grant numbers W81XWH-17-1-0235, W81XWH-20-1-0072, W81XWH-21-1-0514 and HT94252310472), a Damon Runyon Dale Frey Award (DFS-13-15), the Melanoma Research Alliance (grant numbers 412806 and 16-003524), the Cancer Research Institute (Cancer Research Institute Lloyd J. Old STAR Award (CRI4964), CLIP), the AACR (17-20-01-CHEN), The V Foundation (grant number V2017-022), the Alliance for Cancer Gene Therapy, Sontag Foundation (DSA), the Pershing Square Sohn Cancer Research Alliance, Dexter Lu, the Ludwig Family Foundation, the Blavatnik Family Foundation and the Chenevert Family Foundation. G.W. is supported by CRI Irvington and RJ Anderson postdoctoral fellowships. R.C. is supported by NIH MSTP training grant number T32GM007205 and NRSA fellowship (grant number F30CA250249). C.D. is supported by Boehringer Ingelheim Biomedical Data Science Fellowship. N.V. is supported by American Board of Radiology’s B. Leonard Holman Research Pathway Fellowship and the ASTRO Radiation Oncology Seed Grant.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.C. Design: F.Z., G.W., R.C. and S.C. Experimental lead: F.Z., G.W., and E.H. Analytic lead: R.C. and C.D. Experimental and analytic assistance and support: S.X., D.M., Y.F., M.M., X.T. and Y.Z. Paper preperation: F.Z., R.C., G.W., C.D., S.X., N.V. and S.C. Supervision and funding: S.C.

Corresponding authors

Correspondence to Guangchuan Wang or Sidi Chen.

Ethics declarations

Competing interests

S.C. is a (co)founder of EvolveImmune Tx, Cellinfinity Bio, MagicTime Med and Chen Consulting. A patent application (WO2023196711A3, worldwide) has been filed by Yale University related to this study. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Justin Eyquem, Hui Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16.

Reporting Summary

Supplementary Data 1

All supplementary Excel files.

Source data

Source Data Figs. 1–6

Source data and statistics of nonNGS-type data in the Sup_excel_files.zip file.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Chow, R.D., He, E. et al. Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-024-02535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02535-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research