Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A mitochondrial disease model is generated and corrected using engineered base editors in rat zygotes

Abstract

Efficient generation and correction of mutations in mitochondrial DNA (mtDNA) is challenging. Here, through embryonic injection of an mtDNA adenine base editor (eTd-mtABE), Leigh syndrome rat models were generated efficiently (up to 74%) in the F0 generation, exhibiting severe defects. To correct this mutation, a precise mtDNA C-to-T base editor was engineered and injected into mutated embryos. It achieved restoration of wild-type alleles to an average of 53%, leading to amelioration of disease symptoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitochondrial disease models generated by eTd-mtABEs in rats.
Fig. 2: Therapeutic editing of Leigh syndrome rats with engineered DdCBEs.

Similar content being viewed by others

Data availability

HTS data were deposited to the National Center for Biotechnology Information Sequence Read Archive database under accession code PRJNA1252023. There are no restrictions on data availability. Source data are provided with this paper.

References

  1. Kim, J. S. & Chen, J. Base editing of organellar DNA with programmable deaminases. Nat. Rev. Mol. Cell Biol. 25, 34–45 (2024).

    Article  CAS  PubMed  Google Scholar 

  2. Stewart, J. B. Current progress with mammalian models of mitochondrial DNA disease. J. Inherit. Metab. Dis. 44, 325–342 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Silva-Pinheiro, P. & Minczuk, M. The potential of mitochondrial genome engineering. Nat. Rev. Genet. 23, 199–214 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Russell, O. M., Gorman, G. S., Lightowlers, R. N. & Turnbull, D. M. Mitochondrial diseases: hope for the future. Cell 181, 168–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cho, S. I. et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185, 1764–1776 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Gorman, G. S. et al. Mitochondrial diseases. Nat Rev Dis Primers 2, 16080 (2016).

    Article  PubMed  Google Scholar 

  8. Patananan, A. N., Wu, T. H., Chiou, P. Y. & Teitell, M. A. Modifying the mitochondrial genome. Cell Metab. 23, 785–796 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho, S. I. et al. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA. Cell 187, 95–109 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, L. et al. Engineering a precise adenine base editor with minimal bystander editing. Nat. Chem. Biol. 19, 101–110 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, X. et al. Precise modelling of mitochondrial diseases using optimized mitoBEs. Nature 639, 735–745 (2025).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, L. et al. Efficient mitochondrial A-to-G base editors for the generation of mitochondrial disease models. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02685-x (2025).

    Article  PubMed  Google Scholar 

  13. Khoo, A. et al. Progressive myoclonic epilepsy due to rare mitochondrial ND6 mutation, m.14487T>C. BMJ Neurol. Open 3, e000180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thorburn, D. R., Rahman, J. & Rahman, S. Mitochondrial DNA-associated Leigh syndrome and NARP. In GeneReviews (eds Adam, M. P. et al.) (University of Washington, 1993).

  15. Dermaut, B. et al. Progressive myoclonic epilepsy as an adult-onset manifestation of Leigh syndrome due to m.14487T>C. J. Neurol. Neurosurg. Psychiatry 81, 90–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Lim, K. Mitochondrial genome editing: strategies, challenges, and applications. BMB Rep. 57, 19–29 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mok, B. Y. et al. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat. Biotechnol. 40, 1378–1387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, S., Lee, H., Baek, G. & Kim, J. S. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors. Nat. Biotechnol. 41, 378–386 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Lei, Z. et al. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature 606, 804–811 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Adashi, E. Y., Rubenstein, D. S., Mossman, J. A., Schon, E. A. & Cohen, I. G. Mitochondrial disease: replace or edit? Science 373, 1200–1201 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, L. et al. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Nat. Biotechnol. 42, 638–650 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X. et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein ___domain. Nat. Cell Biol. 22, 740–750 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Hwang, G. H. et al. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics 19, 542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Zhang from the Flow Cytometry Core Facility of School of Life Sciences at ECNU and support from the ECNU Public Platform for innovation (011). We thank L. Ji (HAVAS) for designing schematic diagrams. This work was partially supported by grants from the National Key R&D Program of China (2023YFC3403400 and 2023YFE0209200 to D.L.; 2024YFC3407900 to L.C.), National Natural Science Foundation of China (32025023, 32230064 and 32311530111 to D.L.; 31930016 to W.W.; 82230002 to M.L.), Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-05-E00054 to D.L.), Shanghai Municipal Commission for Science and Technology (24J22800400 to D.L.), Young Elite Scientist Sponsorship Program by China Association for Science and Technology (2023QNRC001 to L.C.), Shanghai Oriental Talent Plan (QNZH2024131 to L.C.), Fellowship of China Postdoctoral Science Foundation (8206400139 to Z.Y.) and Lingang Laboratory. D.L. is a Shanghai Academy of Natural Sciences Exploration Scholar.

Author information

Authors and Affiliations

Authors

Contributions

L.C. and D.L. designed the experiments. L.C., C.L., M.H., M.Y., H. Huang, D.G., X.G., Y.L., L.Y., L.G. and H. Han performed the experiments. L.C., C.L., M.H., M.Y., H. Huang, D.G., X.G., Z.C., Z.Y., W.W., M.L. and D.L. analyzed the data. L.C. and D.L. wrote the paper with input from all authors. L.C. and D.L. supervised the research.

Corresponding authors

Correspondence to Liang Chen or Dali Li.

Ethics declarations

Competing interests

The authors have submitted patent applications based on the results reported in this study (L.C., D.L., M.H. and C.L.). The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Note.

Reporting Summary

Supplementary Tables 1–3

Primer sequences used in this study, target sites used in this study and general architecture and DNA or amino acid sequences of plasmids used in this study.

Supplementary Data

Source data for Supplementary Figs. 1–5.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Luan, C., Hong, M. et al. A mitochondrial disease model is generated and corrected using engineered base editors in rat zygotes. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02684-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research