Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Potential approaches to create ultimate genotypes in crops and livestock

Abstract

Many thousands and, in some cases, millions of individuals from the major crop and livestock species have been genotyped and phenotyped for the purpose of genomic selection. ‘Ultimate genotypes’, in which the marker allele haplotypes with the most favorable effects on a target trait or traits in the population are combined together in silico, can be constructed from these datasets. Ultimate genotypes display up to six times the performance of the current best individuals in the population, as demonstrated for net profit in dairy cattle (incorporating a range of economic traits), yield in wheat and 100-seed weight in chickpea. However, current breeding strategies that aim to assemble ultimate genotypes through conventional crossing take many generations. As a hypothetical thought piece, here, we contemplate three future pathways for rapidly achieving ultimate genotypes: accelerated recombination with gene editing, direct editing of whole-genome haplotype sequences and synthetic biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene pyramiding and ‘ultimate genotypes’.
Fig. 2: Use of synthetic biology.

Similar content being viewed by others

References

  1. Watson, I. A. & Singh, D. The future of rust resistant wheat in Australia. J. Aust. Inst. Agric. Sci. 28, 190–197 (1952).

    Google Scholar 

  2. Pedersen, W. L. & Leath, S. Pyramiding major genes for resistance to maintain residual effects. Annu. Rev. Phytopathol. 26, 369–378 (1988).

    Article  Google Scholar 

  3. Peleman, J. D. & van der Voort, J. R. Breeding by design. Trends Plant Sci. 8, 330–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Hospital, F. Marker-assisted breeding. In Plant Molecular Breeding (ed. Newbury, H. J.) 30–56 (Blackwell Scientific, 2003).

  5. Dekkers, J. C. M. & Hospital, F. The use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Genet. 3, 22–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Servin, B., Martin, O. C., Mézard, M. & Hospital, F. Toward a theory of marker-assisted gene pyramiding. Genetics 168, 513–523 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kemper, K. E., Bowman, P. J., Pryce, J. E., Hayes, B. J. & Goddard, M. E. Long-term selection strategies for complex traits using high-density genetic markers. J. Dairy Sci. 95, 4646–4656 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Cole, J. B. & VanRaden, P. M. Use of haplotypes to estimate Mendelian sampling effects and selection limits. J. Anim. Breed. Genet. 128, 446–455 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Georges, M., Charlier, C. & Hayes, B. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 20, 135–156 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Goddard, M. E. A mixed model for analyses of data on multiple genetic markers. Theor. Appl. Genet. 83, 878–886 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Kemper, K. E., Saxton, S. J., Bolormaa, S., Hayes, B. J. & Goddard, M. E. Selection for complex traits leaves little or no classic signatures of selection. BMC Genomics 15, 246 (2014).

    Google Scholar 

  12. Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).

    Article  PubMed  Google Scholar 

  13. Varshney, R. K. et al. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599, 622–627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Villiers, K. et al. Evolutionary computing to assemble standing genetic diversity and achieve long-term genetic gain. Plant Genome 30, e20467 (2024).

    Article  Google Scholar 

  15. Watson, A. et al. Multivariate genomic selection and potential of rapid indirect selection with speed breeding in spring wheat. Crop Sci. 59, 1945–1959 (2019).

    Article  Google Scholar 

  16. Dinglasan, E. Integrating AI and genomic selection to sustain long-term genetic gain. Proc. PAG Aust. 1, 5095 (2023).

    Google Scholar 

  17. Xu, P., Wang, L. & Beavis, W. D. An optimization approach to gene stacking. Eur. J. Oper. Res. 214, 168–178 (2011).

    Article  Google Scholar 

  18. Goiffon, M., Kusmec, A., Wang, L., Hu, G. & Schnable, P. S. Improving response in genomic selection with a population-based selection strategy: optimal population value selection. Genetics 206, 1675–1682 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han, Y., Cameron, J. N., Wang, L. & Beavis, W. D. The predicted cross value for genetic introgression of multiple alleles. Genetics 205, 1409–1423 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goszczynski, D. E., Denicol, A. C. & Ross, P. J. Gametes from stem cells: status and applications in animal reproduction. Reprod. Domest. Anim. 54, 22–31 (2019).

    Article  PubMed  Google Scholar 

  21. Young, N. D. & Tanksley, S. D. RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor. Appl. Genet. 77, 353–359 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Chinnici, J. P. Modification of recombination frequency in Drosophila. I. Selection for increased and decreased crossing over. Genetics 69, 71–83 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bauer, E. et al. Intraspecific variation of recombination rate in maize. Genome Biol. 14, R103 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Johnston, S. E., Slate, J. & Pemberton, J. M. A genomic region containing RNF212 is associated with sexually-dimorphic recombination rate variation in wild Soay sheep (Ovis aries). Genetics 203, 583–598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sandor, C. et al. Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLoS Genet. 8, e1002854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Filler-Hayut, S., Melamed Bessudo, C. & Levy, A. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat. Commun. 8, 15605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Filler-Hayut, S., Kniazev, K., Melamed-Bessudo, C. & Levy, A. A. Targeted inter-homologs recombination in Arabidopsis euchromatin and heterochromatin. Int. J. Mol. Sci. 9, 12096 (2021).

    Article  Google Scholar 

  28. Xie, D. et al. Efficient targeted recombination with CRISPR/Cas9 in hybrids of Caenorhabditis nematodes with suppressed recombination. BMC Biol. 21, 203 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fayos, I. et al. Manipulation of meiotic recombination to hasten crop improvement. Biology 11, 369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Battagin, M. et al. Effect of manipulating recombination rates on response to selection in livestock breeding programs. Genet. Sel. Evol. 48, 44 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taagen, E., Jordan, K., Akhunov, E., Sorrells, M. E. & Jannink, J. L. If it ain’t broke, don’t fix it: evaluating the effect of increased recombination on response to selection for wheat breeding. G3 12, jkac291 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Luo, J. et al. Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR–Cas9-mediated multiplex gene editing. Mol. Plant 14, 847–850 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Tanihara, F. et al. One-step generation of multiple gene-edited pigs by electroporation of the CRISPR/Cas9 system into zygotes to reduce xenoantigen biosynthesis. Int. J. Mol. Sci. 22, 2249 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Article  Google Scholar 

  35. Martin-Rufino, J. D. et al. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 186, 2456–2474 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stuttmann, J. et al. Highly efficient multiplex editing: one-shot generation of 8× Nicotiana benthamiana and 12× Arabidopsis mutants. Plant J. 106, 8–22 (2022).

    Article  Google Scholar 

  37. Lorenzo, C. D. et al. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. Plant Cell 35, 218–238 (2023).

    Article  PubMed  Google Scholar 

  38. Goddard, M. E. & Hayes, B. J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet. 10, 381–391 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Hayes, B. J. & Daetwyler, H. D. 1000 Bull Genomes Project to map simple and complex genetic traits in cattle: applications and outcomes. Annu. Rev. Anim. Biosci. 7, 89–102 (2019).

  40. Krusnauskas, R. & Liu, Q. Haplotype-based gene editing for the treatment of RP1-associated IRDs. Invest. Ophthalmol. Vis. Sci. 65, 1029 (2024).

  41. Warburton, C. L. Genomic Selection in Multi-Breed and Multi-Subspecies Populations. PhD thesis, University of Queensland (2024).

  42. Cole, J. B., Null, D. J. & VanRaden, P. M. Phenotypic and genetic effects of recessive haplotypes on yield, longevity, and fertility. J. Dairy Sci. 99, 7274–7288 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Pryce, J. E. et al. A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. J. Dairy Sci. 93, 3331–3345 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Anand, R. P. et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature 622, 393–401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niu, D. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR–Cas9. Science 357, 1303–1307 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Che, P. et al. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun. Biol. 5, 344 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ellison, E. E. et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 6, 620–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Massel, K. et al. Endogenous U6 promoters improve CRISPR/Cas9 editing efficiencies in Sorghum bicolor and show potential for applications in other cereals. Plant Cell Rep. 41, 489–492 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, Y. et al. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell 186, 5220–5236 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, L. G. et al. A designer synthetic chromosome fragment functions in moss. Nat. Plants 10, 228–239 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Coradini, A. L. V. et al. Building synthetic chromosomes from natural DNA. Nat. Commun. 14, 8337 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bajpai, B. High capacity vectors. In Advances in Biotechnology (eds Ravi, I. et al.) (Springer, 2014).

  54. Brown, D. M. et al. Efficient size-independent chromosome delivery from yeast to cultured cell lines. Nucleic Acids Res. 45, e50 (2017).

    PubMed  Google Scholar 

  55. Pandey, S. et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01227-1 (2024).

    Article  PubMed  Google Scholar 

  56. Kazuki, Y. & Oshimura, M. Human artificial chromosomes for gene delivery and the development of animal models. Mol. Ther. 19, 1591–1601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, M. L., Lin, X. J., Mo, B. X. & Kong, W. W. Plant artificial chromosomes: construction and transformation. ACS Synth. Biol. 13, 15–24 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Kuroiwa, Y. et al. Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat. Biotechnol. 27, 173–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Martella, A., Pollard, S. M., Dai, J. & Cai, Y. Mammalian synthetic biology: time for big MACs. ACS Synth. Biol. 5, 1040–1049 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Gambogi, C. W. et al. Efficient formation of single-copy human artificial chromosomes. Science 383, 1344–1349 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laurie, C. C. et al. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168, 2141–2155 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dunnington, E. A. & Siegel, P. B. Long-term selection for 8-week body weight in chickens — direct and correlated responses. Theor. Appl. Genet. 71, 305–313 (1985).

    Article  CAS  PubMed  Google Scholar 

  63. Brotherstone, S. & Goddard, M. E. Artificial selection and maintenance of genetic variance in the global dairy cow population. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1479–1488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hayes, B. J. et al. Accuracy of marker-assisted selection with single markers and marker haplotypes in cattle. Genet. Res. 89, 215–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Guinan, F. L. et al. Changes in genetic trends in US dairy cattle since the implementation of genomic selection. J. Dairy Sci. 106, 1110–1129 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Hill, W. G., Goddard, M. E. & Visscher, P. M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 4, e1000008 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yadav, S. et al. Improved genomic prediction of clonal performance in sugarcane by exploiting non-additive genetic effects. Theor. Appl. Genet. 134, 2235–2252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carlborg, Ö. et al. Epistasis and the release of genetic variation during long-term selection. Nat. Genet. 38, 418–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nat. Rev. Genet. 3, 11–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Mulder, H. A., Lee, S. H., Clark, S., Hayes, B. J. & van der Werf, J. H. The impact of genomic and traditional selection on the contribution of mutational variance to long-term selection response and genetic variance. Genetics 213, 361–378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cooper, M. et al. Tackling G × E × M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity. Theor. Appl. Genet. 134, 1625–1644 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Scott, B. A., Haile-Mariam, M., Cocks, B. G. & Pryce, J. E. How genomic selection has increased rates of genetic gain and inbreeding in the Australian national herd, genomic information nucleus, and bulls. J. Dairy Sci. 104, 11832–11849 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Makanjuola, B. O. et al. Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations. J. Dairy Sci. 103, 5183–5199 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Tenhunen, S., Thomasen, J. R., Sørensen, L. P., Berg, P. & Kargo, M. Genomic analysis of inbreeding and coancestry in Nordic Jersey and Holstein dairy cattle populations. J. Dairy Sci. 107, 5897–5912 (2024).

  76. Chari, R. & Church, G. Beyond editing to writing large genomes. Nat. Rev. Genet. 18, 749–760 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sved, J. A. Linkage disequilibrium and homozygosity of chromosome segments in finite population. Theor. Pop. Biol. 2, 125–141 (1971).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Goddard and M. Morell for useful discussions. We thank the ARC Training Centre in Predictive Breeding for Agricultural for funding (IC230100016).

Author information

Authors and Affiliations

Authors

Contributions

B.J.H., I.D.G., T.J.M., K.V.-F., K.E.K. and L.T.H. conceived the main ideas presented in this Perspective and drafted the manuscript. K.V., C.W., E.D., H.R. and O.P. contributed to sections of the manuscript and helped draft the overall content.

Corresponding author

Correspondence to Ben J. Hayes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Alison Van Eenennaam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, B.J., Mahony, T.J., Villiers, K. et al. Potential approaches to create ultimate genotypes in crops and livestock. Nat Genet 56, 2310–2317 (2024). https://doi.org/10.1038/s41588-024-01942-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01942-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing