Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct mapping of tyrosine sulfation states in native peptides by nanopore

Abstract

Sulfation is considered the most prevalent post-translational modification (PTM) on tyrosine; however, its importance is frequently undervalued due to difficulties in direct and unambiguous determination from phosphorylation. Here we present a sequence-independent strategy to directly map and quantify the tyrosine sulfation states in universal native peptides using an engineered protein nanopore. Molecular dynamics simulations and nanopore mutations reveal specific interactions between tyrosine sulfation and the engineered nanopore, dominating identification across diverse peptide sequences. We show a nanopore framework to discover tyrosine sulfation in unknown peptide fragments digested from a native protein and determine the sequence of the sulfated fragment based on current blockade enhancement induced by sulfation. Moreover, our method allows direct observation of peptide sulfation in ultra-low abundance, down to 1%, and distinguishes it from isobaric phosphorylation. This sequence-independent strategy suggests the potential of nanopore to explore specific PTMs in real-life samples and at the omics level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-channel recording for mapping the sulfation states of tyrosine with mutant aerolysin nanopore.
Fig. 2: The molecular mechanism of T232K mutant aerolysin mapping the tyrosine sulfation states by MD simulations.
Fig. 3: Determining the tyrosine sulfation without the influences of peptide sequences.
Fig. 4: Discovering tyrosine sulfation in peptide mixtures and native proteins.
Fig. 5: Discrimination of sulfation and phosphorylation on same tyrosine.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available in the main text and the Supplementary Information. Additional raw data and the aerolysin cryo-EM structure are available at figshare (https://doi.org/10.6084/m9.figshare.26494222). Source data are provided with this paper.

References

  1. Bettelheim, F. R. Tyrosine-O-sulfate in a peptide from fibrinogen. J. Am. Chem. Soc. 76, 2838–2839 (1954).

    Article  CAS  Google Scholar 

  2. Baeuerle, P. A. & Huttner, W. B. Tyrosine sulfation is a trans-Golgi-specific protein modification. J. Cell Biol. 105, 2655–2664 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Pouyani, T. & Seed, B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell 83, 333–343 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Sako, D. et al. A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell 83, 323–331 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, S.-W. et al. A type I–secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326, 850–853 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Thompson, R. E. et al. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors. Nat. Chem. 9, 909–917 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Xu, P., Cai, X., Guan, X. & Xie, W. Sulfoconjugation of protein peptides and glycoproteins in physiology and diseases. Pharmacol. Ther. 251, 108540 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maxwell, J. W., Hawkins, P. M., Watson, E. E. & Payne, R. J. Exploiting chemical protein synthesis to study the role of tyrosine sulfation on anticoagulants from hematophagous organisms. Acc. Chem. Res. 56, 909–917 (2023).

    Article  Google Scholar 

  9. Huttner, W. B. Tyrosine sulfation and the secretory pathway. Annu. Rev. Physiol. 50, 363–376 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Bashyal, A. & Brodbelt, J. S. Uncommon posttranslational modifications in proteomics: ADP‐ribosylation, tyrosine nitration, and tyrosine sulfation. Mass Spectrom. Rev. 43, 289–326 (2024).

  11. Maxwell, J. W. & Payne, R. J. Revealing the functional roles of tyrosine sulfation using synthetic sulfopeptides and sulfoproteins. Curr. Opin. Chem. Biol. 58, 72–85 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Li, J. & Zhan, X. Mass spectrometry analysis of phosphotyrosine‐containing proteins. Mass Spectrom. Rev. 43, 857–887 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, Y., Hoffhines, A. J., Moore, K. L. & Leary, J. A. Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat. Methods 4, 583–588 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Witze, E. S., Old, W. M., Resing, K. A. & Ahn, N. G. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods 4, 798–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffhines, A. J., Damoc, E., Bridges, K. G., Leary, J. A. & Moore, K. L. Detection and purification of tyrosine-sulfated proteins using a novel anti-sulfotyrosine monoclonal antibody. J. Biol. Chem. 281, 37877–37887 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosen, C. B., Rodriguez-Larrea, D. & Bayley, H. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat. Biotechnol. 32, 179–181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, S. et al. T232K/K238Q aerolysin nanopore for mapping adjacent phosphorylation sites of a single tau peptide. Small Methods 4, 2000014 (2020).

    Article  CAS  Google Scholar 

  20. Versloot, R. C. A. et al. Quantification of protein glycosylation using nanopores. Nano Lett. 22, 5357–5364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ensslen, T., Sarthak, K., Aksimentiev, A. & Behrends, J. C. Resolving isomeric posttranslational modifications using a biological nanopore as a sensor of molecular shape. J. Am. Chem. Soc. 144, 16060–16068 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Brinkerhoff, H., Kang, A. S., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single–amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, K. et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat. Methods 21, 92–101 (2023).

    Article  PubMed  Google Scholar 

  24. Nova, I. C. et al. Detection of phosphorylation post-translational modifications along single peptides with nanopores. Nat. Biotechnol. 42, 710–714 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, J. et al. Protein nanopore reveals the renin–angiotensin system crosstalk with single-amino-acid resolution. Nat. Chem. 15, 578–586 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Martin-Baniandres, P. et al. Enzyme-less nanopore detection of post-translational modifications within long polypeptides. Nat. Nanotechnol. 18, 1335–1340 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, M. et al. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat. Methods 21, 609–618 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, M.-Y. et al. Revisiting the origin of nanopore current blockage for volume difference sensing at the atomic level. JACS Au 1, 967–976 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schall, T. J. & Proudfoot, A. E. Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat. Rev. Immunol. 11, 355–363 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Niu, H., Li, M.-Y., Ying, Y.-L. & Long, Y.-T. An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport. Chem. Sci. 13, 2456–2461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, J.-G. et al. Full width at half maximum of nanopore current blockage controlled by a single-biomolecule interface. Langmuir 38, 1188–1193 (2022).

    Article  PubMed  Google Scholar 

  32. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Sauciuc, A., Morozzo della Rocca, B., Tadema, M. J., Chinappi, M. & Maglia, G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat. Biotechnol. 42, 1275–1281 (2023).

    Article  PubMed  Google Scholar 

  36. Pastoriza-Gallego, M. et al. Dynamics of unfolded protein transport through an aerolysin pore. J. Am. Chem. Soc. 133, 2923–2931 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Seibert, C., Cadene, M., Sanfiz, A., Chait, B. T. & Sakmar, T. P. Tyrosine sulfation of CCR5 N-terminal peptide by tyrosylprotein sulfotransferases 1 and 2 follows a discrete pattern and temporal sequence. Proc. Natl Acad. Sci. USA 99, 11031–11036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, W. et al. Histone tyrosine sulfation by SULT1B1 regulates H4R3me2a and gene transcription. Nat. Chem. Biol. 19, 855–864 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Talaga, D. S. & Li, J. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131, 9287–9297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mehta, A. Y., Heimburg-Molinaro, J., Cummings, R. D. & Goth, C. K. Emerging patterns of tyrosine sulfation and O-glycosylation cross-talk and co-localization. Curr. Opin. Struct. Biol. 62, 102–111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Humphrey, W., Dalke, A., Schulten, K. & VMD Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, Y., Liang, M., Wang, R. & He, C. Chemical protein synthesis elucidates key modulation mechanism of the tyrosine-O-sulfation in inducing strengthened inhibitory activity of hirudin. Chin. Chem. Lett. 34, 107806 (2023).

    Article  CAS  Google Scholar 

  44. Wu, X.-Y. et al. Precise construction and tuning of an aerolysin single-biomolecule interface for single-molecule sensing. CCS Chem. 1, 304–312 (2019).

    Article  CAS  Google Scholar 

  45. Liu, S.-C. & Long, Y.-T. PyNanoLab. Zenodo https://doi.org/10.5281/zenodo.11383973 (2019).

  46. Iacovache, I. et al. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nat. Commun. 7, 12062 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  48. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Feller, S. E., Zhang, Y., Pastor, R. W. & Brooks, B. R. Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613–4621 (1995).

    Article  CAS  Google Scholar 

  51. Batcho, P. F., Case, D. A. & Schlick, T. Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J. Chem. Phys. 115, 4003–4018 (2001).

    Article  CAS  Google Scholar 

  52. Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Balsved, D., Bundgaard, J. R. & Sen, J. W. Stability of tyrosine sulfate in acidic solutions. Anal. Biochem. 363, 70–76 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. He from South China University of Technology for supplying HIRV1 protein, X.Y. Wu for help in aerolysin construction and H. Bhatti for discussions in writing. This research was supported by the National Natural Science Foundation of China (22334006 to Y.-T.L., 22027806 to Y.-T.L. and 22207054 to M.-Y.L.), the programs for high-level entrepreneurial and innovative talents introduction of Jiangsu Province, and the Program for Outstanding PhD Candidates of Nanjing University (202401A05 to H.N.).

Author information

Authors and Affiliations

Authors

Contributions

M.-Y.L., H.N. and Y.-T.L. conceived the idea and designed the experiments. H.N. performed the nanopore experiments. H.N. and Y.G. analyzed the nanopore data. H.N. constructed the MD simulations, with assistance from M.-Y.L. H.N., J.-G.L., J.J. and Y.-L.Y. expressed and purified protein nanopores. H.N. and M.-Y.L. interpreted the data and wrote the manuscript. M.-Y.L. and Y.-T.L. supervised the project. All authors critically reviewed the manuscript.

Corresponding authors

Correspondence to Meng-Yin Li or Yi-Tao Long.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Ryuji Kawano, Xubo Lin and Chang Liu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Supplementary Figs. 1–49

Reporting Summary

Supplementary Data 1

Sequences of primers for aerolysin mutations

Source data

Source Data Fig. 1

Statistic source data

Source Data Fig. 2

Statistic source data

Source Data Fig. 3

Statistic source data

Source Data Fig. 4

Statistic source data

Source Data Fig. 5

Statistic source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, H., Li, MY., Gao, Y. et al. Direct mapping of tyrosine sulfation states in native peptides by nanopore. Nat Chem Biol 21, 716–726 (2025). https://doi.org/10.1038/s41589-024-01734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-024-01734-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing