Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Population-level amplification of gene regulation by programmable gene transfer

Abstract

Engineering cells to sense and respond to environmental cues often focuses on maximizing gene regulation at the single-cell level. Inspired by population-level control mechanisms like the immune response, we demonstrate dynamic control and amplification of gene regulation in bacterial populations using programmable plasmid-mediated gene transfer. By regulating plasmid loss rate, transfer rate and fitness effects via Cas9 endonuclease, F conjugation machinery and antibiotic selection, we modulate the fraction of plasmid-carrying cells, serving as an amplification factor for single-cell-level regulation. This approach expands the dynamic range of gene expression and allows orthogonal control across populations. Our platform offers a versatile strategy for dynamically regulating gene expression in engineered microbial communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ADEPT: amplification of population-level gene expression control.
Fig. 2: ADEPT tunes plasmid abundance and population-level gene expression.
Fig. 3: Targeted cutting tunes plasmid abundance and total gene expression levels at the population level.
Fig. 4: Temporal control of population-level gene expression.
Fig. 5: Orthogonal control of population-level gene expression.
Fig. 6: Amplification of the response to an inflammatory bowel disease biomarker TTR.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.14188774 (ref. 68). Sequence information of the promoter and RBS can be found at http://parts.igem.org/Promoters/Catalog/Anderson and https://parts.igem.org/Ribosome_Binding_Sites/Prokaryotic/Constitutive/Community_Collection, respectively. Source data are provided with this paper.

Code availability

Model simulation and data analysis code used in this study are deposited on Zenodo at https://doi.org/10.5281/zenodo.14188774 (ref. 68).

References

  1. Hartline, C. J., Schmitz, A. C., Han, Y. & Zhang, F. Dynamic control in metabolic engineering: theories, tools, and applications. Metab. Eng. 63, 126–140 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. McNerney, M. P., Doiron, K. E., Ng, T. L., Chang, T. Z. & Silver, P. A. Theranostic cells: emerging clinical applications of synthetic biology. Nat. Rev. Genet. 22, 730–746 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, C. et al. Engineering whole-cell microbial biosensors: design principles and applications in monitoring and treatment of heavy metals and organic pollutants. Biotechnol. Adv. 60, 108019 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cox, R. S. III, Surette, M. G. & Elowitz, M. B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354–360 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, Y. et al. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Nat. Commun. 9, 64 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Segall-Shapiro, T. H., Sontag, E. D. & Voigt, C. A. Engineered promoters enable constant gene expression at any copy number in bacteria. Nat. Biotechnol. 36, 352–358 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, B., Kitney, R. I., Joly, N. & Buck, M. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun. 2, 508 (2011).

    Article  PubMed  Google Scholar 

  13. Dwidar, M. & Yokobayashi, Y. Riboswitch signal amplification by controlling plasmid copy number. ACS Synth. Biol. 8, 245–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Qi, L., Haurwitz, R. E., Shao, W., Doudna, J. A. & Arkin, A. P. RNA processing enables predictable programming of gene expression. Nat. Biotechnol. 30, 1002–1006 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-designed regulators of gene expression. Cell 159, 925–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Isaacs, F. J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Cameron, D. E. & Collins, J. J. Tunable protein degradation in bacteria. Nat. Biotechnol. 32, 1276–1281 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rouches, M. V., Xu, Y., Cortes, L. B. G. & Lambert, G. A plasmid system with tunable copy number. Nat. Commun. 13, 3908 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Joshi, S. H., Yong, C. & Gyorgy, A. Inducible plasmid copy number control for synthetic biology in commonly used E. coli strains. Nat. Commun. 13, 6691 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, C., Zou, Y., Jiang, T., Zhang, J. & Yan, Y. Harnessing plasmid replication mechanism to enable dynamic control of gene copy in bacteria. Metab. Eng. 70, 67–78 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hicks, M., Bachmann, T. T. & Wang, B. Synthetic biology enables programmable cell-based biosensors. ChemPhysChem 21, 132–144 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. McCutcheon, S. R., Chiu, K. L., Lewis, D. D. & Tan, C. CRISPR–Cas expands dynamic range of gene expression from T7RNAP promoters. Biotechnol. J. 13, e1700167 (2018).

    Article  PubMed  Google Scholar 

  24. Westbrook, A. M. & Lucks, J. B. Achieving large dynamic range control of gene expression with a compact RNA transcription–translation regulator. Nucleic Acids Res. 45, 5614–5624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harvey, J. A., Corley, L. S. & Strand, M. R. Competition induces adaptive shifts in caste ratios of a polyembryonic wasp. Nature 406, 183–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Lecoutey, E., Châline, N. & Jaisson, P. Clonal ant societies exhibit fertility-dependent shifts in caste ratios. Behav. Ecol. 22, 108–113 (2011).

    Article  Google Scholar 

  27. Lopez, D., Vlamakis, H. & Kolter, R. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol. Rev. 33, 152–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ubeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Tomanek, I. et al. Gene amplification as a form of population-level gene expression regulation. Nat. Ecol. Evol. 4, 612–625 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Maddamsetti, R. et al. Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria. Nat. Commun. 15, 1449 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yao, Y. et al. Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection. Nat. Ecol. Evol. 6, 555–564 (2022).

    Article  PubMed  Google Scholar 

  33. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Adams, N. M., Grassmann, S. & Sun, J. C. Clonal expansion of innate and adaptive lymphocytes. Nat. Rev. Immunol. 20, 694–707 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Badovinac, V. P., Haring, J. S. & Harty, J. T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26, 827–841 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alberts, B. Molecular Biology of the Cell (Garland Science, 2002).

  37. Wang, T. & You, L. The persistence potential of transferable plasmids. Nat. Commun. 11, 5589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lopatkin, A. J. et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat. Commun. 8, 1689 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. McGinness, K. E., Baker, T. A. & Sauer, R. T. Engineering controllable protein degradation. Mol. Cell 22, 701–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Dimitriu, T. et al. Genetic information transfer promotes cooperation in bacteria. Proc. Natl Acad. Sci. USA 111, 11103–11108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mannan, A. A., Liu, D., Zhang, F. & Oyarzun, D. A. Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synth. Biol. 6, 1851–1859 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Feng, H., Guo, J., Wang, T., Zhang, C. & Xing, X. H. Guide-target mismatch effects on dCas9–sgRNA binding activity in living bacterial cells. Nucleic Acids Res. 49, 1263–1277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lugagne, J. B. et al. Balancing a genetic toggle switch by real-time feedback control and periodic forcing. Nat. Commun. 8, 1671 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Baumgart, L., Mather, W. & Hasty, J. Synchronized DNA cycling across a bacterial population. Nat. Genet. 49, 1282–1285 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Ammar, E. M., Wang, X. & Rao, C. V. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Sci. Rep. 8, 609 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Daeffler, K. N. et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13, 923 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653–658 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kamdar, K. et al. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease. Cell Host Microbe 19, 21–31 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, Y. W., Denkmann, K., Kosciow, K., Dahl, C. & Kelly, D. J. Tetrathionate stimulated growth of Campylobacter jejuni identifies a new type of bi-functional tetrathionate reductase (TsdA) that is widely distributed in bacteria. Mol. Microbiol. 88, 173–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Hensel, M., Hinsley, A. P., Nikolaus, T., Sawers, G. & Berks, B. C. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32, 275–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Nora, L. C. et al. Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnol. Adv. 37, 107433 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Nora, L. C. et al. The art of vector engineering: towards the construction of next-generation genetic tools. Microb. Biotechnol. 12, 125–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Park, Y., Espah Borujeni, A., Gorochowski, T. E., Shin, J. & Voigt, C. A. Precision design of stable genetic circuits carried in highly-insulated E. coli genomic landing pads. Mol. Syst. Biol. 16, e9584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, T. & Dunlop, M. J. Controlling and exploiting cell-to-cell variation in metabolic engineering. Curr. Opin. Biotechnol. 57, 10–16 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Delvigne, F., Zune, Q., Lara, A. R., Al-Soud, W. & Sorensen, S. J. Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol. 32, 608–616 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Rugbjerg, P. & Sommer, M. O. A. Overcoming genetic heterogeneity in industrial fermentations. Nat. Biotechnol. 37, 869–876 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Tan, S. Z. & Prather, K. L. Dynamic pathway regulation: recent advances and methods of construction. Curr. Opin. Chem. Biol. 41, 28–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Choi, K. R. et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37, 817–837 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Kroll, J., Klinter, S., Schneider, C., Voss, I. & Steinbuchel, A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb. Biotechnol. 3, 634–657 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cranenburgh, R. M., Hanak, J. A., Williams, S. G. & Sherratt, D. J. Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res. 29, E26 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brooks, S. M. & Alper, H. S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun. 12, 1390 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, T. et al. Horizontal gene transfer enables programmable gene stability in synthetic microbiota. Nat. Chem. Biol. 18, 1245–1252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Warren, D. J. Preparation of highly efficient electrocompetent Escherichia coli using glycerol/mannitol density step centrifugation. Anal. Biochem. 413, 206–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Son, H.-I. & You, L. Population-level amplification of gene regulation by programmable gene transfer. Zenodo https://zenodo.org/records/14188774 (2024).

Download references

Acknowledgements

We thank H. Ma, M. Lynch, E. Chory, C. Gersbach and J. Granek for insightful comments and suggestions. This work was supported by the National Institutes of Health (R01EB031869 and R01AI125604 to L.Y.) and a National Science Foundation Graduate Fellowship (to G.S.H.).

Author information

Authors and Affiliations

Authors

Contributions

H.-I.S. and L.Y. conceived the idea. H.-I.S. and L.Y. designed the experimental and computational studies. H.-I.S., G.S.H. and K.K. cloned the plasmids. H.-I.S., G.S.H. and A.R.S. performed Fp and GFP measurements, persistence testing and temporal programming experiments. H.-I.S. conducted sgRNA screening and biosensor testing. H.-I.S. and L.Y. analyzed ordinary differential equation models. K.Y. fabricated the microfluidic devices. H.-I.S. and K.K. conducted timelapse microscopy experiments. H.-I.S., G.S.H. and L.Y. wrote and revised multiple versions of the manuscript. All the authors read and contributed revisions. L.Y. and T.J.H. supervised the work and acquired funding.

Corresponding author

Correspondence to Lingchong You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks James Carothers, Konstantin Severinov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Microscopic analysis of GFP distribution.

We tested three circuit variants: (A) the variant circuit encoding a perfectly matching spacer and constitutively expressing GFP-ssrA (circuit used in Fig. 2); (B) the variant circuit encoding a perfectly matching spacer and expressing GFP under pLac (circuit used in Extended Data Fig. 2); and (C) the variant circuit encoding a mismatching spacer expressing GFP under pLac (circuit used in Fig. 3). Overnight culture carrying each of the three circuits were first primed by diluting 1/100-fold in LB + 25 µg/mL Cm for 3 hours (37 °C, 225 rpm) in 50 mL Erlenmeyer flasks. Then, the cells were diluted another 1/10-fold and distributed into 4 types of media: (1) LB + 25 µg/mL Cm, (2) LB + 25 µg/mL Cm + 100 ng/mL ATc, (3) LB + 25 µg/mL Cm + 50 µg/mL Kan, and (4) LB + 25 µg/mL Cm + 50 µg/mL Kan + 100 ng/mL ATc in a 2-mL deep well plate. After another 3 hours of incubation (37 °C, 700 rpm), 1.5 µl of each sample was loaded on glass sides and was covered with cover slips. Cells were imaged on a microscope (Keyence, BZ-X800). At least five frames with moderate cell density were taken for each sample type. The acquired images were analyzed using standard Python packages (Numpy (version 1.25.2), Pandas (version 2.0.3), and Skimage (version 0.23.2)). The GFP values were log transformed before plotting the histogram for clearer visualization. All circuits showed a bimodality when the CRISPR/Cas9 interference was induced. When the spacer is perfectly matching, the bimodality is stronger, especially when Cas9-mediated cutting is not induced, suggesting a substantial basal level cutting activity.

Extended Data Fig. 2 Alternative circuit design for maximizing total GFP dynamic range.

(A) Schematic of the inducible ADEPT circuit. In this design, GFP is no longer ssrA-tagged, allowing a higher accumulation, and is regulated under the lactose-inducible promoter pLac, adding a new layer for gene expression control. All other control mechanisms (ATc, Kan, and Lin) remain the same. (B-D) The alternative design was tested under various inducer combinations by measuring the pTarget-carrying fraction (Fp) (B), normalized GFP intensity (C), and total GFP intensity (D). (B) For Fp measurement, cells were grown overnight in LB media supplemented with 25 μg/mL Cm + 50 μg/mL Kan in a 2-mL deep well plate. Cultures were diluted 1/1000-fold into 20 media conditions with combinations of ATc (0, 0.01, 0.1, 1, 10, and 100 ng/mL), Lin (0 and 3.2 mM), and Kan (0 and 50 μg/mL). After 4 hours, samples were plated on LB agar plates containing 25 μg/mL Cm ± 50 μg/mL Kan for CFU counting. Fp was calculated as the ratio of CFU from Cm + Kan plates from Cm-only plates. Dashed and solid lines represent the mean of four technical replicates. (C-D) For GFP measurement, overnight cultures were diluted 10-4-fold into the same 20 media conditions. No inducer was added for GFP expression since leaky expression under pLac was sufficient to observe the effect of ATc, Kan, and Lin. Samples were placed in a black-walled 96-well plate with 50 µl of mineral oil to prevent evaporation. After 15 hours at 37 °C, cell density (OD600) and GFP intensity (Ex: 488 nm; Em: 510 nm) were measured. The normalized GFP signal (C) showed a trend similar to total GFP intensity (D), demonstrating the robustness and modularity of the ADEPT design.

Source data

Extended Data Fig. 3 Suppressed state culture recovering to recapture the original dynamic trend.

Each of the suppressed state cultures from Fig. 3c were reinoculated in the same 4 types of media (10-3 fold dilution) and cultured for another 24 hours. GFP was measured from the recovered cultures at t = 48 hours. We observed the recovered cultures exhibited a large dynamic range as observed from the initial culture shown in Fig. 3c.

Source data

Extended Data Fig. 4 Additional persistence test results.

(A) Extended data from Fig. 3d, including showing two additional samples. The first four samples are identical to the those shown in Fig. 3d, with data from two more samples (Msp2 and Msp3) added. All samples are MG1655 + FHR cells carrying pCas9 and one of six pTargets: (1) pTarget encoding a targeting spacer (sp) that perfectly matches the target region but does not encode oriT; (2) pTarget carrying sp and oriT; (3) pTarget carrying a non-targeting spacer (NT) and oriT; (4) – (6): pTarget carrying sp with 1 or 2 base pair mismatches and oriT. The mismatched spacers are the same as those used in the first three panels of Fig. 3c, containing different sets of mismatches (see Supplementary Table 3 for sequences). Cells carrying pCas9 and one of the six pTargets were cultured in LB with 25 µg/mL Cm and diluted 1/1000 every 24 hours for 6 days. The fraction of cells carrying pTarget (Fp) were measured daily by plating on LB agar with 25 µg/mL Cm or 25 µg/mL Cm + 50 µg/mL Kan for CFU counting. Plasmid abundance (Fp) was calculated as: \({Fp}=\scriptstyle\frac{\frac{{CFU}}{{ml}}\text{counted from LB}+\text{Cm}+\text{Kan plates}}{\frac{{CFU}}{{ml}}\text{counted from LB}+\text{Cm plates}}\). The data shows that not all mismatches ensure plasmid persistence. The line plot represents the mean of four technical replicates. (B) All six maintained FHR after 6 days of passaging. The gray bar represents the mean of four technical replicates. Using Day 6 cultures, we measured the fraction of cells carrying FHR on blank LB agar plates and LB plates supplemented with 10 µg/mL tetracycline, which selects for FHR. Despite variability among replicates, nearly 100 % of samples maintained FHR.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and Figs. 1–10.

Reporting Summary

Supplementary Data

Source data for supplementary figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data. Microscope images are deposited on Zenodo68.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data. Microscope images are deposited on Zenodo68.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, HI., Hamrick, G.S., Shende, A.R. et al. Population-level amplification of gene regulation by programmable gene transfer. Nat Chem Biol 21, 939–948 (2025). https://doi.org/10.1038/s41589-024-01817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-024-01817-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology