Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orthogonalized human protease control of secreted signals

Abstract

Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. Although protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. In this study, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins. We sourced a specific human protease and its FDA-approved inhibitor. We engineered cytokines (IL-2, IL-6 and IL-10) whose activities can be activated and abrogated by proteolytic cleavage. We used species specificity and re-localization strategies to orthogonalize the cytokines and protease from the human context that they would be deployed in. hDIRECT should enable local cytokine activation to support a variety of cell-based therapies, such as muscle regeneration and cancer immunotherapy. Our work offers a proof of concept for the emerging appreciation of humanization in synthetic biology for human health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering caged IL-10.
Fig. 2: Engineering caged IL-6 and IL-2.
Fig. 3: Engineering of cleavable cytokines.
Fig. 4: Orthogonalization of renin.
Fig. 5: Compact delivery of hDIRECT in mammalian cells.
Fig. 6: hDIRECT primary T cell proliferation co-culture.

Similar content being viewed by others

Data availability

Raw experimental data and computation-generated data for main text figures are provided as Source Data. Raw flow cytometry data (.fcs files) for Fig. 6 and Extended Data Fig. 1 are available from the corresponding author upon reasonable request. Raw experimental data for supplementary figures are included in Supplementary Data 1. New plasmids used in this study are available for distribution from Addgene (https://www.addgene.org/Xiaojing_Gao/), and a comprehensive list of plasmids used in this study can be found in Supplementary Table 1 (including their Addgene IDs). Protein sequences were retrieved from UniProt (https://www.uniprot.org/) to align renin and its substrates (P11859, P01019, P00797 and P06281). Crystal structures of renin complexed with its susbtrate were obtained from the RCSB Protein Data Bank (https://www.rcsb.org/) (6I3F). The protein sequence of HCVp (genotype 1a, NS3) was obtained from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) (NC_004102). Source data are provided with this paper.

References

  1. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 5, 179ps7 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Labanieh, L., Majzner, R. G. & Mackall, C. L. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2, 377–391 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Ninagawa, N. T. et al. Transplantated mesenchymal stem cells derived from embryonic stem cells promote muscle regeneration and accelerate functional recovery of injured skeletal muscle. Biores. Open Access 2, 295–306 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Winkler, T. et al. Dose–response relationship of mesenchymal stem cell transplantation and functional regeneration after severe skeletal muscle injury in rats. Tissue Eng. Part A 15, 487–492 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Munir, H. & McGettrick, H. M. Mesenchymal stem cell therapy for autoimmune disease: risks and rewards. Stem Cells Dev. 24, 2091–2100 (2015).

    Article  PubMed  Google Scholar 

  6. Squillaro, T., Peluso, G. & Galderisi, U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 25, 829–848 (2016).

    Article  PubMed  Google Scholar 

  7. Marofi, F. et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther. 12, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Preda, M. B. et al. Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death Dis. 12, 566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, N. & Cho, S.-G. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int. J. Stem Cells 8, 54–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kerkar, S. P. et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res. 70, 6725–6734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nitahara-Kasahara, Y. et al. Enhanced cell survival and therapeutic benefits of IL-10-expressing multipotent mesenchymal stromal cells for muscular dystrophy. Stem Cell Res. Ther. 12, 105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, Z. & Elowitz, M. B. Programmable protein circuit design. Cell 184, 2284–2301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Tague, E. P., Dotson, H. L., Tunney, S. N., Sloas, D. C. & Ngo, J. T. Chemogenetic control of gene expression and cell signaling with antiviral drugs. Nat. Methods 15, 519–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacobs, C. L., Badiee, R. K. & Lin, M. Z. StaPLs: versatile genetically encoded modules for engineering drug-inducible proteins. Nat. Methods 15, 523–526 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics—developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Vlahos, A. E. et al. Protease-controlled secretion and display of intercellular signals. Nat. Commun. 13, 912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Praznik, A. et al. Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage. Nat. Commun. 13, 1323 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferdosi, S. R. et al. Multifunctional CRISPR–Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 10, 1842 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lamers, C. H. J. et al. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 117, 72–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature 332, 323–327 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Li, H.-S. et al. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 378, 1227–1234 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rauch, S. et al. Programmable RNA-guided RNA effector proteins built from human parts. Cell 178, 122–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, I. et al. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 185, 1431–1443.e16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Danser, A. H. J. & Deinum, J. Renin, prorenin and the putative (pro)renin receptor. Hypertension 46, 1069–1076 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Vaidyanathan, S., Jarugula, V., Dieterich, H. A., Howard, D. & Dole, W. P. Clinical pharmacokinetics and pharmacodynamics of aliskiren. Clin. Pharmacokinet. 47, 515–531 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Puskas, J. et al. Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases. Immunology 133, 206–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu, E. J. et al. A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat. Commun. 12, 2768 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, X., Wong, K., Ouyang, W. & Rutz, S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb. Perspect. Biol. 11, a028548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarvas, J. L., Khaper, N. & Lees, S. J. The IL-6 paradox: context dependent interplay of SOCS3 and AMPK. J. Diabetes Metab. https://doi.org/10.4172/2155-6156.s13-003 (2013).

  33. Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardí, M. & Muñoz-Cánoves, P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 7, 33–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, C. et al. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J. Biol. Chem. 288, 1489–1499 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Liao, W., Lin, J.-X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosenberg, S. A. Interleukin 2 for patients with renal cancer. Nat. Clin. Pract. Oncol. 4, 497 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hawkins, E. R., D’Souza, R. R. & Klampatsa, A. Armored CAR T-cells: the next chapter in T-cell cancer immunotherapy. Biologics 15, 95–105 (2021).

    PubMed  PubMed Central  Google Scholar 

  38. Logsdon, N. J., Jones, B. C., Josephson, K., Cook, J. & Walter, M. R. Comparison of interleukin-22 and interleukin-10 soluble receptor complexes. J. Interferon Cytokine Res. 22, 1099–1112 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Gorby, C. et al. Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci. Signal. 13, eabc0653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garbers, C. et al. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev. 23, 85–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Wolf, J., Rose-John, S. & Garbers, C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 70, 11–20 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Kwon, B. The two faces of IL-2: a key driver of CD8+ T-cell exhaustion. Cell. Mol. Immunol. 18, 1641–1643 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shikano, S. & Li, M. Membrane receptor trafficking: evidence of proximal and distal zones conferred by two independent endoplasmic reticulum localization signals. Proc. Natl Acad. Sci. USA 100, 5783–5788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fukamizu, A. et al. Dependence of angiotensin production in transgenic mice carrying either the human renin or human angiotensinogen genes on species-specific kinetics of the renin-angiotensin system. Arzneimittelforschung 43, 222–225 (1993).

    CAS  PubMed  Google Scholar 

  45. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Kalidasan, V. et al. A guide in lentiviral vector production for hard-to-transfect cells, using cardiac-derived c-kit expressing cells as a model system. Sci. Rep. 11, 19265 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang, W. et al. Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J. Neurosci. 29, 8621–8629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Subramanian, N., Torabi-Parizi, P., Gottschalk, R. A., Germain, R. N. & Dutta, B. Network representations of immune system complexity. Wiley Interdiscip. Rev. Syst. Biol. Med. 7, 13–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Orzechowski, A. Cytokines in skeletal muscle growth and decay. In The Plasticity of Skeletal Muscle (ed Sakuma, K.) 113–139 (Springer Singapore, 2017).

  50. Yang, W. & Hu, P. Skeletal muscle regeneration is modulated by inflammation. J. Orthop. Transl. 13, 25–32 (2018).

    Google Scholar 

  51. Steyn, P. J., Dzobo, K., Smith, R. I. & Myburgh, K. H. Interleukin-6 induces myogenic differentiation via JAK2-STAT3 signaling in mouse C2C12 myoblast cell line and primary human myoblasts. Int. J. Mol. Sci. 20, 5273 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deng, B., Wehling-Henricks, M., Villalta, S. A., Wang, Y. & Tidball, J. G. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol. 189, 3669–3680 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Coppola, C. et al. Investigation of the impact from IL-2, IL-7, and IL-15 on the growth and signaling of activated CD4+ T cells. Int. J. Mol. Sci. 21, 7814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nielsen, M. & Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 8, 33 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Calis, J. J. A. et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 9, e1003266 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vaidyanathan, S. et al. Pharmacokinetics, safety, and tolerability of the novel oral direct renin inhibitor aliskiren in elderly healthy subjects. J. Clin. Pharmacol. 47, 453–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Gradman, A. H. et al. Aliskiren, a novel orally effective renin inhibitor, provides dose-dependent antihypertensive efficacy and placebo-like tolerability in hypertensive patients. Circulation 111, 1012–1018 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Kishina, M. et al. Therapeutic effects of the direct renin inhibitor, aliskiren, on non-alcoholic steatohepatitis in fatty liver Shionogi ob/ob male mice. Hepatol. Res. 44, 888–896 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health (NIH) (R00EB027723 and DP2OD034951; X.J.G.); Longevity Impetus grants (X.J.G.); a Wu Tsai Human Performance Alliance Agility Project Grant (X.J.G.); the Stanford Bio-X Interdisciplinary Initiatives Seed Grant Program (R11-7; X.J.G.); a Stanford Graduate Fellowship (C.A.A.); the Sarafan ChEM-H CBI training program (C.A.A.); the Bio-X Stanford Interdisciplinary Graduate Fellowship (C.A.A.); an NIH Cellular and Molecular Biology training grant (T32 GM007276; C.C.C.); a National Science Foundation Graduate Research Fellowship (DGE-2146755; C.C.C. and L.E.S.); the International Human Frontier Science Program Organization (LT000221/2021-L; A.E.V.); a Welch Foundation grant (I-2095-20220331; Q.C.); and support as a Southwestern Medical Foundation endowed scholar (Q.C.).

Author information

Authors and Affiliations

Authors

Contributions

C.A.A. and X.J.G. conceived and directed the study. C.A.A. designed and performed all experiments for the protein engineering and characterization. C.C.C. designed and performed the T cell proliferation and in vivo study. A.E.V. created the transmembrane ___domain and ER retention motifs for renin constructs as well as performed tail vein injections for the in vivo study. J.P. and Q.C. provided recommended mutations for the H2M renin. L.E.S. conducted the computational immunogenicity analysis. C.A.A. and C.C.C. analyzed the data for the manuscript. C.A.A., X.J.G. and C.C.C. wrote the manuscript. All authors provided feedback on the manuscript.

Corresponding author

Correspondence to Xiaojing J. Gao.

Ethics declarations

Competing interests

The Board of Trustees of Stanford University has filed a patent on behalf of the inventors (C.A.A. and X.J.G.) of the small-molecule control of membrane and secreted proteins using human proteases platform described (US provisional application no. 63/458833). An additional provisional patent application has also been filed on behalf of the inventors (C.A.A., X.J.G., J.P. and Q.C.) for the orthogonalization of human renin. X.J.G. is a co-founder and serves on the scientific advisory board of Radar Tx. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks John Ngo and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Gating Strategy for FACS and flow cytometry analysis of K562s and T cell expansion.

a, Gating strategy used to sort K562s engineered to express IL-2 hDIRECT (mCherry+) from lentiviral transduced population used in the T cell expansion assay on Fig. 6b-c. b, Gating strategy to analyze T cell expansion with co-incubation with hDIRECT-engineered K562s (mCherry+). Cells and singlets were liberally gated to include all possible cells and to identify T cells (mCherry-) for analysis in Fig. 6b.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Supplementary Tables 1–3.

Reporting Summary

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldrete, C.A., Call, C.C., Sant’Anna, L.E. et al. Orthogonalized human protease control of secreted signals. Nat Chem Biol (2025). https://doi.org/10.1038/s41589-024-01831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41589-024-01831-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing